Don’t miss out on electronic packaging’s premier conference!

ECTC
The 2019 IEEE 69th Electronic Components and Technology Conference
May 28 - May 31, 2019
The Cosmopolitan of Las Vegas
Las Vegas, Nevada, USA

For more information, visit: www.ectc.net

Program Supported by:

Sponsored by:
Greetings:

As Mayor, I am very pleased to welcome you to America’s most dynamic, entertaining, and intriguing city! You could not have chosen a better locale. I am convinced that once you get a taste of what the city has to offer, you will never want to leave. Las Vegas continues to capture the world’s imagination as the city where anything is possible. With world-class hotels, award-winning restaurants, luxurious spas, fantastic shopping, the finest golf courses, and spectacular entertainment, Las Vegas remains one of the most electrifying destinations in the world.

At its heart Las Vegas is all about making sure residents and visitors are well taken care of, treated courteously, and shown a great time. Beyond the neon of the fabulous Strip and the Fremont Street Experience, there is another Las Vegas—one in which we are building a world-class city featuring the best in arts, culture, sporting opportunities, and quality medical care. The Smith Center for the Performing Arts has set a high standard for art and culture in our city, and I encourage everyone to take in a concert or Broadway show at this magnificent venue. Regardless of your age, a must-visit spot is the children’s interactive Discover Museum adjacent to the Smith Center. Buzzing with excitement is the Fremont East Entertainment District, a place with an energy and enthusiasm through its taverns, restaurants, and music venues.

The city also offers beautiful weather and outdoor activities, from top class golfing to opportunities for world-class hiking and rock climbing at the Red Rock Canyon National Conservation Area, to skiing at Mount Charleston, and a visit to the awe-inspiring Hoover Dam at the Lake Mead National Recreation Area. If history is more your speed, you are in luck because the National Museum of Organized Crime and Law Enforcement and the Neon Museum are two of the most interesting and unique experiences in the country.

I want to thank you for choosing Las Vegas and look forward to seeing you around town. I know you will have a fabulous time enjoying our great city and everything it has to offer. Now what are you waiting for? The party has already started! Welcome.

Sincerely,

Carolyn G. Goodman
Mayor, City of Las Vegas
On behalf of the Program Committee and Executive Committee, it is our pleasure to welcome you to the 69th Electronic Components and Technology Conference (ECTC), which will be held at The Cosmopolitan of Las Vegas in Las Vegas, Nevada from May 28-31, 2019. This premier international conference brings together key stakeholders of the global microelectronics packaging industry, such as semiconductor companies, foundry and OSAT service providers, equipment manufacturers, materials suppliers, research institutions and universities all under one roof.

For the 69th ECTC, the ECTC Program Committee has selected over 350 papers which will be presented in 36 oral sessions and five interactive presentation sessions including one interactive presentation session exclusively featuring papers by student authors. The oral sessions will feature selected papers on key topics such as fan-out packaging, wafer-level packaging, flip-chip packaging, 3D/TSV technologies, design for RF performance and signal/power integrity, thermal and mechanical modeling, optoelectronics packaging, materials and reliability. Interactive presentation sessions will showcase papers in a format that encourages more in-depth discussion and interaction with authors about their work.

Authors from over twenty countries are expected to present their work at the 69th ECTC, covering ongoing technology development within established disciplines or emerging topics of interest for our industry such as additive manufacturing, heterogeneous integration, flexible and wearable electronics.

ECTC will also feature six special sessions with invited industry experts covering several important and emerging topic areas. On Tuesday, May 28 at 9 a.m., W. Hong Yeo and Mikel Miller will chair a special session covering “Transient Electronics: A Green Revolution for Packaging.” On the same day at 2 p.m., Rena Huang and Soon Jang will chair a session focused on “Photonics on the Cutting-Edge of Technology Evolution.” Tuesday evening will also include the ECTC Panel Session “Future (Visions) of Electronic Packaging” at 7:45 p.m. chaired by IEEE EPS President Avi Bar-Cohen and Karlheinz Bock, where young researchers will share their visions of future packaging technologies and participate in discussions with experts in the field.

This conference will also feature a Women’s Panel and Reception jointly organized by ECTC and ITherm on Wednesday, May 29 at 6:30 p.m. This year, panelists from around the globe will share their perspectives on efforts to enhance the participation of women in engineering, and the panel will be chaired by Kristina Young-Fisher and Cristina Amon. On the same day at 7:30 p.m., Tanja Braun will chair the ECTC Plenary Session titled “Sensors and Packaging for Autonomous Driving.” In this plenary session, experts will address the challenges and demands for sensors and packages for autonomous driving along the value chain. On Thursday, May 30 at 8 p.m., the IEEE EPS Seminar titled “Roadmap of IC Packaging Materials to Meet Next-Generation Smartphone Performance Requirements” will be moderated by Yasumitsu Orii and Shigenori Aoki from the High-Density Substrates & Boards Technical Committee of the IEEE EPS Society.

Supplementing the technical program, ECTC also offers Professional Development Courses (PDCs) and the Technology Corner exhibits. Co-located with the IEEE IThERM Conference this year, the 69th ECTC will offer eighteen PDCs, organized by the PDC Committee chaired by Kitty Pearsall and Jeffrey Suhling. The PDCs will take place on Tuesday, May 28 and are taught by distinguished experts in their respective fields. The Technology Corner will showcase the latest technologies and products offered by leading companies in the electronic components, materials, packaging and services fields. More than one hundred Technology Corner exhibits will be open Wednesday and Thursday starting at 9 a.m. ECTC also offers attendees numerous opportunities for networking and discussion with colleagues during coffee breaks, daily luncheons and nightly receptions.

Whether you are an engineer, a manager, a student or an executive, ECTC offers something unique for everyone in the microelectronics packaging and components industry. We invite you to join us during the 69th ECTC to be a part of all the 69th ECTC and be a part of all the exciting technical and professional opportunities. We also take this opportunity to thank our sponsors, exhibitors, authors, speakers, PDC instructors, session chairs, and program committee members, as well as all the volunteers who help make the 69th ECTC a success. Once again, thank you for being a part of the 69th ECTC.

Mark Poliks
69th ECTC General Chair
Binghamton University
mpoliks@binghamton.edu

Nancy Stoffel
69th ECTC Program Chair
General Electric Research Center
stoffel@ge.com
On behalf of the IEEE Electronics Packaging Society, it is my great pleasure and privilege to welcome you to the 69th Electronic Components and Technology Conference – the largest Packaging Conference in the world.

Building on the long history of ECTC and its predecessor Conferences, begun 69 years ago, this conference, and the electronic packaging community we serve, continue to grow in size and in impact. We expect attendance at this year’s ECTC, and ITherm - the co-located EPS Thermal Phenomena Conference - to well exceed 2000 packaging professionals. Including the forthcoming EPS Asia-Pacific Flagship Conference, EPTC, in December, and the other sponsored and co-sponsored conferences and workshops, EPS is on track to serve more than 5000 Conference attendees world-wide in 2019.

I would like to take this opportunity to thank all of you for attending ECTC and our volunteers on the ECTC Executive and Program Committees, members of the Board of Governors, volunteers from the EPS Society, and the ECTC and EPS staff for their commitment and dedication to making the 69th ECTC and its associated activities the premier annual event of the electronic packaging community. We are fortunate to have so many of you actively engaged in this conference, and we are indebted to the large, skilled and enthusiastic team that keeps finding new ways to serve the electronic packaging community.

It is very rewarding to see the impact of these technical events and networking activities on the EPS Society, our industry, and our members. My deepest thanks and appreciation to all of you for the opportunity to work with you to develop the breakthroughs in packaging technology that will continue to drive innovation in the microelectronic industry!

Avram Bar-Cohen
EPS President 2018-2019

YIELD ENGINEERING SYSTEMS, INC.

YES-ÉcoClean

Automated Plasma Resist Strip/Descum System

- 2x faster, 1/2 the capital cost, and 1/2 the footprint of comparative products
- Elegantly simple system with low cost ownership
- No defects or damage due to ICP downstream plasma
- Eco-friendly “Green” process
- Flexible system from descum to strip – 100 to 100,000 Å/min

Yield Engineering Systems, Inc.
Call: 1 925-373-8353 (worldwide)
or 1-888-YES-3637 (US toll free)
www.yieldengineering.com

Visit us at booth 219

Introducing...

aversemi

A new ASICs company with 25 years experience leading the industry.

Learn more at averasemi.com
Conference organizers reserve the right to cancel or change this program without prior notice.

ECTC Luncheon Keynote

Soft Electronic and Microfluidic Systems for the Skin

Wednesday, May 29, 2019 • Belmont 3, 4th Floor

John A. Rogers – Director of Center for Bio-Integrated Electronics, Northwestern University

Recent advances in materials, mechanics, and manufacturing establish the foundations for high-performance classes of electronics and other microsystems technologies that have physical properties precisely matched to the human epidermis. The resulting devices can integrate with the skin in a physically imperceptible fashion to provide continuous, clinical-quality information on physiological status. This talk will summarize the key ideas and presents specific examples in wireless monitoring for neonatal intensive care, and in capture, storage, and biomarker analysis of sweat.

ECTC Mobile App

ECTC is pleased to announce that a free mobile app is available again this year. The app provides information on schedules for our technical program and PDCs as well as exhibitors, sponsors, and general conference information and venue maps. The app also features tools to set your schedule so you don’t miss presentations important to you, social interaction functions, and the ability to provide ratings on presentations that are used in selecting candidates for best paper awards.

The ECTC app is available for iOS and Android devices through the QuickMobile Events app available in the respective app stores. After downloading the app, search for “ECTC19” as the event ID, and follow the instructions to set up your account.

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wafer-Level Fan-Out Process and Integration</td>
</tr>
<tr>
<td>2</td>
<td>Next-Generation Wirebonding and Die Attach</td>
</tr>
<tr>
<td>3</td>
<td>RDL and Additive Manufacturing</td>
</tr>
<tr>
<td>4</td>
<td>Advances in Automotive and Power Devices</td>
</tr>
<tr>
<td>5</td>
<td>Bonding Manufacturing Technologies</td>
</tr>
<tr>
<td>6</td>
<td>Emerging Flexible Hybrid Electronics</td>
</tr>
<tr>
<td>7</td>
<td>Advances in Flip Chip Packaging</td>
</tr>
<tr>
<td>8</td>
<td>Material and Process Trends in RQWLP and MLP</td>
</tr>
<tr>
<td>9</td>
<td>Wearables and Thin-Package Reliability and Chip Package Interaction</td>
</tr>
<tr>
<td>10</td>
<td>Dong and Encapsulation Technologies</td>
</tr>
<tr>
<td>11</td>
<td>Automotive and High-Environment Reliability</td>
</tr>
<tr>
<td>12</td>
<td>Advanced Photonics Devices and Packaging</td>
</tr>
<tr>
<td>13</td>
<td>Technologies Enabling 3D and Heterogeneous Integration</td>
</tr>
<tr>
<td>14</td>
<td>Flip-Chip Solderless Bonding</td>
</tr>
<tr>
<td>15</td>
<td>High-Bandwidth Packaging</td>
</tr>
<tr>
<td>16</td>
<td>Advanced Materials for High-Speed Electronics</td>
</tr>
<tr>
<td>17</td>
<td>Materials and Design for Reliability of Next-Generation Packages</td>
</tr>
<tr>
<td>18</td>
<td>Waqarc and Material Performance</td>
</tr>
<tr>
<td>19</td>
<td>MEMS, Sensors, and IoT</td>
</tr>
<tr>
<td>20</td>
<td>Fanout and Heterogeneous Integration</td>
</tr>
<tr>
<td>21</td>
<td>5G, mm-Wave, and Antenna-in-Package</td>
</tr>
<tr>
<td>22</td>
<td>Advanced Substrates and Interconnect Technology</td>
</tr>
<tr>
<td>23</td>
<td>High-Bandwidth 3D and Photonics</td>
</tr>
<tr>
<td>24</td>
<td>Advances in Solder Joint Characterization and Reliability Evaluation</td>
</tr>
<tr>
<td>25</td>
<td>Wafer-Level Packaging and Fan-In-Fan-Out Structures & Materials</td>
</tr>
<tr>
<td>26</td>
<td>High-Speed Signaling for High-Performance Computing and Memory</td>
</tr>
<tr>
<td>27</td>
<td>Advanced Biotelemetry and Biosensors</td>
</tr>
<tr>
<td>28</td>
<td>Embedded and Integrated Technologies</td>
</tr>
<tr>
<td>29</td>
<td>Electromigration and Innovative Reliability Test Methods</td>
</tr>
<tr>
<td>30</td>
<td>Assembly and Process Modeling</td>
</tr>
<tr>
<td>31</td>
<td>Automotive and Power Packaging</td>
</tr>
<tr>
<td>32</td>
<td>Power and Panel Assembly</td>
</tr>
<tr>
<td>33</td>
<td>Fan-Out, Flip-Chip, and Wafer Level Packaging</td>
</tr>
<tr>
<td>34</td>
<td>Emerging Materials and Processing</td>
</tr>
<tr>
<td>35</td>
<td>New Interconnects for Package Scaling</td>
</tr>
<tr>
<td>36</td>
<td>RF & Power Components and Modules</td>
</tr>
<tr>
<td>37</td>
<td>Interactive Presentations 1</td>
</tr>
<tr>
<td>38</td>
<td>Interactive Presentations 2</td>
</tr>
<tr>
<td>39</td>
<td>Interactive Presentations 3</td>
</tr>
<tr>
<td>40</td>
<td>Interactive Presentations 4</td>
</tr>
<tr>
<td>41</td>
<td>Student Interactive Presentations</td>
</tr>
<tr>
<td>42</td>
<td>Technology Career Booth Layout</td>
</tr>
<tr>
<td>43</td>
<td>Technology Career Exhibits</td>
</tr>
<tr>
<td>44</td>
<td>ECTC Executive Committee</td>
</tr>
<tr>
<td>45</td>
<td>ECTC Program Committee</td>
</tr>
<tr>
<td>46</td>
<td>79th ECTC Call for Papers</td>
</tr>
<tr>
<td>47</td>
<td>Conference Sponsorship</td>
</tr>
<tr>
<td>48</td>
<td>Media Sponsorship</td>
</tr>
<tr>
<td>49</td>
<td>Host Layout</td>
</tr>
<tr>
<td>50</td>
<td>79th ECTC Dates and Location</td>
</tr>
</tbody>
</table>

ECTC Luncheon Keynote

Soft Electronic and Microfluidic Systems for the Skin

Wednesday, May 29, 2019 • Belmont 3, 4th Floor

John A. Rogers – Director of Center for Bio-Integrated Electronics, Northwestern University

Recent advances in materials, mechanics, and manufacturing establish the foundations for high-performance classes of electronics and other microsystems technologies that have physical properties precisely matched to the human epidermis. The resulting devices can integrate with the skin in a physically imperceptible fashion to provide continuous, clinical-quality information on physiological status. This talk will summarize the key ideas and presents specific examples in wireless monitoring for neonatal intensive care, and in capture, storage, and biomarker analysis of sweat.

ECTC Mobile App

ECTC is pleased to announce that a free mobile app is available again this year. The app provides information on schedules for our technical program and PDCs as well as exhibitors, sponsors, and general conference information and venue maps. The app also features tools to set your schedule so you don’t miss presentations important to you, social interaction functions, and the ability to provide ratings on presentations that are used in selecting candidates for best paper awards.

The ECTC app is available for iOS and Android devices through the QuickMobile Events app available in the respective app stores. After downloading the app, search for “ECTC19” as the event ID, and follow the instructions to set up your account.

Dual-Layer Solution

A path changing direction for temporary bonding

![Diagram of bonding process](image)

Check out our website at www.brewersscience.com for more information.

©2019 Brewer Science, Inc.
Registration
ECTC registration will be open at the ECTC Registration Desk located in The Cosmopolitan Las Vegas in Las Vegas, NV, 4th floor in the Belmont Commons Foyer.

Monday, May 27, 2019 • 3:00 p.m. – 5:00 p.m.
Tuesday, May 28, 2019 • 6:45 a.m. – 8:15 a.m.*
(AM PD Courses & Special Session Only)*
Tuesday, May 28, 2019 • 8:15 a.m. – 5:00 p.m.
(All conference attendees)
Wednesday, May 29, 2019 • 6:45 a.m. – 4:00 p.m.
Thursday, May 30, 2019 • 7:30 a.m. – 4:00 p.m.
Friday, May 31, 2019 • 7:30 a.m. – 12:00 Noon

On Tuesday, May 28th light morning refreshments will be provided from 6:45 a.m. – 7:15 a.m. Come register and grab a bite to eat before the PDCs start!

*The above schedule for Tuesday will be vigorously enforced to prevent students from being late for their courses. Please make sure to take advantage of the 6:45am start time as registration becomes very congested prior to the start of morning Professional Development Courses.

Door Registration Fees
Door Registration includes a Proceedings on USB drive
IEEE Member JOINT Registration (full ECTC + Itherm conference) ……. $1160
IEEE Member Full Registration ………………………………………….. $860
IEEE Member Speaker / Session Chair ……………………………… $765
IEEE Member One Day ………………………………………………… $565
IEEE Member Speaker One Day ……………………………………… $430
Exhibit Booth Attendant ……………………………………………… $0
Non-Member JOINT Registration (full ECTC + Itherm conference) … $1375
Non-Member Full Registration ………………………………………….. $1055
Non-Member Speaker / Session Chair ……………………………… $765
Non-Member One Day ………………………………………………… $565
Non-Member Speaker One Day ……………………………………… $430
Exhibit Booth Attendant ……………………………………………… $0
Student…………………………………………………………………… $315
Student Speaker………………………………………………………… $315
Exhibits Only……………………………………………………………… $25

Tuesday Professional Development Courses
IEEE Members and Non-Members
Tuesday AM or PM Course with luncheon ……………………. $500
Tuesday All-Day Courses with luncheon ……………………… $710
Tuesday Student All-Day Courses with luncheon ……………… $130
Extra Luncheon Tickets for Each Day …………………………… $65
Extra Proceedings with Registration ……………………………… $100

Professional Development Course Instructors Breakfast
PDC Instructors and Proctors are required to attend a briefing breakfast.
7:00 a.m. Tuesday – PDC Instructors and Proctor Briefing
(Room Location: Belmont 3, 4th floor)

Session Chairs and Speakers Breakfast
Session Chairs and speakers are requested to attend a complimentary continental breakfast on the morning of their sessions/presentations. At this time, presentations will be transferred to the conference PC, which is loaded with Windows and Microsoft Office.

7:00 a.m. Wednesday thru Friday
(Room Location: Belmont 3, 4th floor, Wednesday – Thursday)
(Room Location: Belmont 5, 4th floor, Friday)

Speaker Prep Room
Speakers should prepare and review their digital presentations within the allotted times below:
7:00 a.m. – 5:00 p.m., Tuesday – Friday
(Room Location: Yaletown 2, 4th floor)
(It is extremely important to assure that your presentation, presentation software and computer work flawlessly with the digital projector provided.)
MISCELLANEOUS INFORMATION

Hotel Concierge
The Hotel Concierge, located in the hotel lobby, can direct you to various types of entertainment or restaurants, or give suggestions for that special night out. The Concierge can help to make your visit and conference experience a memorable one.

Press Room
Press Interviews will be scheduled on an as-requested basis. To coordinate an interview with conference leadership or presenting technical experts please contact ECTC Publicity Chair, Eric Perfecto, at eperfecto@gmail.com or (845) 475-1290.

LUNCHEONS

Tuesday, May 28, 2019
12PM
Belmont 3, 4th floor
Our Tuesday lunch is provided for anyone attending a Professional Development Course, whether you attend just a single course or both a morning and afternoon course. PDC Proctors, session speakers, committee members or anyone else with a Tuesday lunch ticket is more than welcome to join! Possession of a lunch ticket is required for admission.

Wednesday, May 29, 2019
12PM
Belmont 3, 4th floor
This year’s Wednesday luncheon will feature Dr. John A. Rogers, Director for the Center for Bio-Integrated Electronics at Northwestern University. We will also be celebrating award winners for Best and Outstanding Papers of 2018! Don’t miss it! Possession of a lunch ticket is required for admission.

Thursday, May 30, 2019
12PM
Belmont 3, 4th floor
The IEEE Electronics Packaging Society will host our Thursday luncheon for conference attendees. The EPS awards will be presented. Possession of a lunch ticket is required for admission.

Friday, May 31, 2019
12PM
Belmont 3, 4th floor
Do NOT MISS Friday’s luncheon! It’s our annual ECTC Program Chair luncheon where lots of high dollar, valuable, and useful prizes will be raffled off! Each year the prizes seem to get better and better. Remember you must be present to win. Possession of a lunch ticket is required for admission.

Please note that due to increased attendance ECTC will have an overflow lunch room on Wednesday & Thursday located in Castellana 2, 3rd floor.
Please make sure to be in line for lunch early if your preference is the main lunch room.

Heterogeneous Integration Roadmap Workshop

Tuesday, May 28, 2019 • 8:00 a.m. - 5:00 p.m.

Moderators: William Chen – ASE, Bill Bottoms – 3MT Solutions and Ravi Mahajan – Intel

Condesa 3, 2nd Floor

Our industry has reinvented itself through multiple disruptive changes in technologies, products, and markets. Our industry continues to change with the rapid migration of logic, memory, and applications to the cloud, the evolution of the Internet of Things (IoT) to the Internet of Everything (IoE), the proliferation of smart devices everywhere, the rise of 5G, the increasing presence of microelectronics in wearables & health application, and in autonomous automotive, and the rapid advancement of AI.

The pace of innovation is simultaneously increasing to meet these challenges. The Heterogeneous Integration Roadmap will address the future directions of heterogeneous integration technologies and applications serving the future markets and applications.

The Heterogeneous Integration Roadmap Technical Working Groups are celebrating the completion of the 1st edition of the Heterogeneous Integration Roadmap. The Technical Working Groups will be reporting out their work products and on their plan for the next edition.

We like to invite all the ECTC & ITherm participants to attend this important working session for our profession and for our industry. Registration is not required.

Sekisui Semiconductor Package & Assembly Materials

enabling next generation semiconductor products

- **SELFA UV Releasable Temporary Adhesive**
 High temperature / chemical process resistive temporary adhesive used in processes such sputtering for EMI shielding

- **Build-up Dielectric Materials for Advanced FC-BGAs**
 Low Df dielectric material used in high-end IC packages such as Switch ASICs to reduce insertion loss

- **Thermal Interface Materials**
 Various product types (sheet / grease / FIN) available depending on requirement with up to 45W/mK conductivity

- **High Resolution Inkjet Additive Manufacturing Material**
 High resolution inkjet system enabling manufacturing of high aspect ratio microstructures

- **Polymer Cored Solder Ball**
 Highly uniform solder coated micropolymer cored solder ball enabling more reliable solder joints between components

- **Self Aligning Solder Paste**
 A unique solder paste where solder particles congregate to metallic junction through heating enabling finer liner and space

Sekisui Semiconductor Package & Assembly Materials

Sekisui Chemical Co., Ltd.
2099 Gateway Place, Suite 310
San Jose, CA, 95110
inquiry@sekiisuproduxts.com
2019 SPECIAL SESSION
Transient Electronics: A Green Revolution for Packaging?
Tuesday, May 28, 2019
9:00 a.m. – 11:30 a.m.
Castellana 2, 3rd Floor

Chairs: W. Hong Yeo - Georgia Institute of Technology and Mikel Miller - EMD Performance Materials

Speakers:
1. John Rogers – Northwestern University
2. Matthew MacEwan – Washington University
3. Paul Kohl – Georgia Institute of Technology
4. Mihai Irimia-Vladiu – Joanneum Research Forschungsgesellschaft mbH

2019 PHOTONICS SPECIAL SESSION
Photonics on the Cutting-Edge of Technology Evolution
Tuesday, May 28, 2019
2:00 p.m. – 4:30 p.m.
Castellana 2, 3rd Floor

Chairs: Rena Huang - Rensselaer Polytechnic Institute and Soon Jang - ficonTEC (USA) Corporation

Speakers:
1. Bert Offrein – IBM Research GmbH-Zurich
2. Mark Thompson – PsiQuantum
3. Roy Meade – Ayar Labs

2019 ECTC PANEL SESSION
Future (Visions) of Electronic Packaging
Tuesday, May 28, 2019
7:45 p.m. – 9:15 p.m.
Mont-Royal 1 & 2, 4th Floor

Chairs: Avi Bar-Cohen, EPS President - Raytheon and Karheinz Bock - TU Dresden

Speakers:
1. Martin Schubert – TU Dresden
2. Shreya Dwarkanath – Georgia Institute of Technology
3. Chandrasekharan Nair – Georgia Institute of Technology
4. Siddharth Ravichandran – Georgia Institute of Technology
Professional Development Courses

Morning Courses 8:00 a.m. – 12:00 Noon

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mont-Royal 1</td>
<td>Achieving High Reliability of Lead-Free Solder Joints – Materials Considerations</td>
<td>Ning-Cheng Lee – Indium Corporation</td>
</tr>
<tr>
<td>Nolita 1</td>
<td>2. Introduction to Fan-Out Wafer-Level Packaging</td>
<td>Beth Keser – Intel Corporation</td>
</tr>
<tr>
<td>Mont-Royal 2</td>
<td>5. Polymers and Nanocomposites for Electronic and Photonic Packaging</td>
<td>C. P. Wong – Georgia Institute of Technology; Daniel Lu – Henkel Corporation</td>
</tr>
<tr>
<td>Mont-Royal 1</td>
<td>6. Fundamentals of RF Design and Fabrication Processes of Fan-Out Wafer/Panel Level Packages and Interposers</td>
<td>Ivan Ndip and Markus Wöhrmann – Fraunhofer IZM</td>
</tr>
<tr>
<td>Nolita 3</td>
<td>2. Introduction to Fan-Out Wafer-Level Packaging</td>
<td>Indrajit Dutta and Jay Zhang – Corning Inc.</td>
</tr>
<tr>
<td>Castellana 1</td>
<td>9. Integrated Thermal Packaging and Reliability of Power Electronics</td>
<td>Patrick McCluskey – University of Maryland</td>
</tr>
</tbody>
</table>

Afternoon Courses 1:30 p.m. – 5:30 p.m.

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nolita 2</td>
<td>12. Flexible Hybrid Electronics – Manufacturing and Reliability</td>
<td>Pradeep Lall – Auburn University</td>
</tr>
</tbody>
</table>

Refreshment Breaks
- 10:00 - 10:20 a.m. & 3:00 - 3:20 p.m.
- Mont-Royal Commons, Belmont Commons 4 & 8, & Castellana 1
AWARDS FROM THE 68TH ECTC

BEST OF CONFERENCE PAPERS
The Electronic Components and Technology Conference is proud to announce the “Best of Conference” papers selected from the 68th ECTC proceedings. The authors of the Best Session Paper share a check for US $2,500, and the authors of the Best Interactive Presentation share a check for US $1,500. The winning authors also receive a personalized plaque commemorating their achievement.

Best Session Paper
Session 27, Paper 5
Material Characterization of Advanced Cement-Based Encapsulation Systems for Efficient Power Electronics with Increased Power Density

Best Interactive Presentation Paper
Session 39, Paper 6
Correlated Model For Wafer Warpage Prediction of Arbitrarily Patterned Films
Gregory T. Ostrawicki, Siva Gumum and Amit Nangia – Texas Instruments, Inc.

INTEL BEST STUDENT PAPER
The winning student receives a personalized plaque and a check for US $2,500. The following paper was selected based on the Intel Best Student Paper competition conducted at the 68th ECTC.

Session 23, Paper 3
Miniaturized High-Performance Filters for 5G Small-Cell Applications

OUTSTANDING PAPERS
The winning authors for the Conference Outstanding Session Paper and Interactive Presentation selected from the 68th ECTC proceedings receive a personalized plaque commemorating their achievement and will share a check for US $1,000.

Outstanding Session Paper
Session 7, Paper 1
Laser Sintering of Dip-Based All-Copper Interconnects
Luca Del Carro, Thomas Brunschwiler – IBM Research, Zurich; Martin Kossatz, Lucas Schnackenberg, Matthias Fettke – PacTech – Packaging Technologies GmbH; and Ian Clark – Intrinsic Materials Ltd.

Outstanding Interactive Presentation
Session 37, Paper 20
Non-destructive Assessment of the Porosity in Silver (Ag) Sinter Joints using Acoustic Waves
Sebastian Brand, Bianca Böttge, Michael Kägel, Falk Naumann, Frank Altmann – Fraunhofer Institute for Microstructure of Materials and Systems (IMWS); Junian Zijl, Sebastiaan Kersjes – BEST Netherlands, B.V. and Thomas Behrens - Infineon Technologies AG

TEXAS INSTRUMENTS OUTSTANDING STUDENT INTERACTIVE PRESENTATION
The winning student receives a personalized plaque and a check for US $1,000. The following paper was selected based on the Texas Instruments Outstanding Student Interactive Presentation competition conducted at the 68th ECTC.

Session 39, Paper 10
Copper Transparent Antennas on Flexible Glass by Subtractive and Semi-Additive Fabrication for Automotive Applications
Jack P. Lombardi III, Robert E. Makay, Mark D. Poliks - Binghamton University; James H. Schaffner, Hyok Jae Song - HRL Laboratories, LLC, Ming-Huang Huang, Scott C. Pollard - Corning, Inc.; and Timothy Talty – General Motors

CORNING LEADERSHIP IN GLASS AWARD
The winning authors receive an engraved Steuben crystal Euclidean award and each receive a gift card for US $100. The following paper was selected from submissions to the 68th ECTC.

Session 38, Paper 18
A Novel Inorganic Substrate by Three Dimensionally Stacked Glass Core Technology
Toshiaki Iwai, Taiji Sakai, Daisuke Mizutani, Seiki Sakuyama - Fujitsu Laboratories Ltd.; Kenji Iida, Takayuki Inaba, Hidehiko Fujisaki, and Yoshinori Miyazawa - Fujitsu Interconnect Technologies Ltd.

COMMITTEE MEETINGS • ASSOCIATED COMMITTEE MEMBERS ONLY

Tuesday, May 28, 2019
8:00 a.m. – 5:00 p.m.
EPS Heterogeneous Integration Roadmap Workshop
Condesa 3, 2nd floor
9:00 a.m. – 10:30 p.m.
ECTC OPTO Committee Meeting
Jardins Boardroom, 2nd floor
9:00 a.m. – 10:30 p.m.
ECTC Interconnect Committee Meeting
Bellavista Boardroom, 2nd floor
Wednesday, May 29, 2019
7:00 a.m. – 8:00 a.m.
EPS Materials & Processes TC
Jardins Boardroom, 2nd floor
7:00 a.m. – 8:00 a.m.
EPS Power & Energy TC
Bellavista Boardroom, 2nd floor
4:30 p.m. – 5:30 p.m.
EPS Technical Committee Chairs Meeting
Bellavista Boardroom, 2nd floor
6:00 p.m. – 7:00 p.m.
Program Subcommittee Chairs & Assistant Chairs Reception
General Chair’s Suite (by invitation only)
Thursday, May 30, 2019
7:00 a.m. – 8:00 a.m.
EPS Region 8 Meeting
Condesa 5, 2nd floor
7:00 a.m. – 8:00 a.m.
EPS Nanotechnology TC
Bellavista Boardroom, 2nd floor
7:00 a.m. – 8:00 a.m.
EPS High Density Substrates & Boards TC
Jardins Boardroom, 2nd floor
7:00 a.m. – 8:00 a.m.
EPS Electrical Design, Modeling & Simulation TC
Belmont 4, 4th floor
7:00 a.m. – 8:00 a.m.
EPS Reliability TC
Condesa 6, 2nd floor
5:30 p.m. – 6:30 p.m.
ECTC 2020 Program Committee Meeting
Nolita 1, 4th floor
8:00 p.m.
69th ECTC Governing/Executive Committee Reception
General Chair’s Suite
Friday, May 31, 2019
7:00 a.m. – 8:00 a.m.
EPS Emerging Technologies TC
Jardins Boardroom, 2nd floor
7:00 a.m. – 8:00 a.m.
EPS Thermal & Mechanical TC
Condesa 5, 2nd floor
7:00 a.m. – 8:30 a.m.
EPS Transaction Editors TC / AE’s Meeting
Condesa 2, 2nd floor
1:30 p.m. – 4:30 p.m.
ECTC Executive Committee Meeting
Jardins Boardroom, 2nd floor
Conference At A Glance

<table>
<thead>
<tr>
<th>Registration</th>
<th>Monday 3:00 p.m. - 5:00 p.m.</th>
<th>Tuesday 6:45 a.m. - 5:00 p.m.</th>
<th>Wednesday 6:45 a.m. - 4:00 p.m.</th>
<th>Thursday 7:30 a.m. - 4:00 p.m.</th>
<th>Friday 7:30 a.m. - 12:00 p.m.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology Corner</td>
<td>Exhibits</td>
<td></td>
<td></td>
<td></td>
<td>Belmore Commons Foyer</td>
</tr>
<tr>
<td>Wednesday 9:00 a.m. - 12:00 p.m.</td>
<td></td>
<td>1:30 p.m. - 6:30 p.m.</td>
<td>Reception - 5:30 p.m. - 6:30 p.m.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speaker Preparation Room</td>
<td>Tuesday - Friday 7:00 a.m. - 5:00 p.m.</td>
<td>Yaletown 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuesday</td>
<td>PDC Instructors and Proctors</td>
<td>Briefing & Breakfast 7:00 a.m. - 7:45 a.m.</td>
<td>Belmont 3, 4th Floor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professional Development Courses (PDCs)</td>
<td>8:00 a.m. - Noon</td>
<td>1:30 p.m. - 5:30 p.m.</td>
<td>See page 9 for locations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPS Heterogeneous Integration Roadmap Workshop</td>
<td>8:00 a.m. - 5:00 p.m.</td>
<td>Condesa 3, 2nd Floor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Sessions:</td>
<td>ECTC Special Session 9:00 a.m. - 11:30 a.m.</td>
<td>Castellana 2, 3rd Floor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photonics Special Session</td>
<td>2:00 p.m. - 4:30 p.m.</td>
<td>Castellana 2, 3rd Floor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refreshment Breaks</td>
<td>10:00 a.m. - 10:20 a.m.</td>
<td>3:00 p.m. - 3:20 p.m.</td>
<td>Mont-Royal Commons, Belmont Commons 4 & 8, & Castellana</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lunch for PDCs</td>
<td>12 p.m. Noon</td>
<td>Belmont 3, 4th Floor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology Corner Set Up</td>
<td>1:00 p.m. - 5:00 p.m.</td>
<td>Belmont 1 & 5, 4th Floor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECTC Student Reception</td>
<td>5:00 p.m. - 6:00 p.m.</td>
<td>Mont-Royal Commons, 4th Floor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Chair’s Speakers Reception</td>
<td>6:00 p.m. - 7:00 p.m.</td>
<td>OUTSIDE at the North Blvd. Pool (Rain Backup: Belmont 3, 4th Floor)</td>
<td>By invitation only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young Professionals Networking Panel</td>
<td>7:00 p.m. - 7:45 p.m.</td>
<td>Nolita 1, 4th Floor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECTC Panel Session</td>
<td>7:45 p.m. - 9:15 p.m.</td>
<td>Mont-Royal 1 & 2, 4th Floor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wednesday</td>
<td>Speakers Breakfast 7:00 a.m. - 7:45 a.m.</td>
<td>Belmont 3, 4th Floor</td>
<td>Sessions 1 - 12 8:00 a.m. - 11:40 a.m.</td>
<td>1:30 p.m. - 5:30 p.m.</td>
<td>See pages 12 - 15 for specifics</td>
</tr>
<tr>
<td>Interactive Presentations</td>
<td>Sessions 37 - 38</td>
<td>9:00 a.m. - 11:00 a.m. or 2:00 p.m. - 4:00 p.m.</td>
<td>see pages 24 - 25 for specifics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refreshment Breaks</td>
<td>9:15 a.m. - 10:00 a.m.</td>
<td>2:45 p.m. - 3:30 p.m.</td>
<td>Belmont 1 & 5, 4th Floor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lunch</td>
<td>12 p.m. - 1:15 p.m.</td>
<td>Belmont 3, 4th Floor</td>
<td>Overflow: Castellana, 3rd Floor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECTC/IHERM Panel & Reception</td>
<td>6:30 p.m. - 7:30 p.m.</td>
<td>Nolita 1, 4th Floor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECTC Plenary Session</td>
<td>7:30 p.m. - 9:00 p.m.</td>
<td>Mont-Royal 1 & 2, 4th Floor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thursday</td>
<td>Speakers Breakfast 7:00 a.m. - 7:45 a.m.</td>
<td>Belmont 3, 4th Floor</td>
<td>Sessions 13 - 24 8:00 a.m. - 11:40 a.m.</td>
<td>1:30 p.m. - 5:30 p.m.</td>
<td>See pages 16 - 19 for specifics</td>
</tr>
<tr>
<td>Interactive Presentations</td>
<td>Sessions 39 - 40</td>
<td>9:00 a.m. - 11:00 a.m. or 2:00 p.m. - 4:00 p.m.</td>
<td>see pages 25 - 26 for specifics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refreshment Breaks</td>
<td>9:15 a.m. - 10:00 a.m.</td>
<td>2:45 p.m. - 3:30 p.m.</td>
<td>Belmont 1 & 5, 4th Floor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lunch</td>
<td>12 p.m. - 1:15 p.m.</td>
<td>Belmont 3, 4th Floor</td>
<td>Overflow: Castellana, 3rd Floor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69th ECTC Gala Reception</td>
<td>6:30 p.m. - 7:30 p.m.</td>
<td>Mont-Royal 1 & 2, 4th Floor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friday</td>
<td>Speakers Breakfast 7:00 a.m. - 7:45 a.m.</td>
<td>Belmont 3, 4th Floor</td>
<td>Sessions 25 - 36 8:00 a.m. - 11:40 a.m.</td>
<td>1:30 p.m. - 5:30 p.m.</td>
<td>See pages 20 - 23 for specifics</td>
</tr>
<tr>
<td>Interactive Presentations</td>
<td>Session 41</td>
<td>8:30 a.m. - 10:30 a.m.</td>
<td>see pages 26 - 27 for specifics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refreshment Breaks</td>
<td>9:15 a.m. - 10:00 a.m.</td>
<td>2:45 p.m. - 3:30 p.m.</td>
<td>Mont-Royal Commons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lunch</td>
<td>12 p.m. - 1:15 p.m.</td>
<td>Belmont 3, 4th Floor</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Program Sessions: Wednesday, May 29, 8:00 a.m. - 11:40 a.m.

<table>
<thead>
<tr>
<th>Session 1: Wafer-Level Fan-Out Process Integration</th>
<th>Session 2: Next-Generation Wirebonding and Die Attach</th>
<th>Session 3: RDL and Additive Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Committee: Packaging Technologies</td>
<td>Committee: Interconnections</td>
<td>Committee: Packaging Technologies in conjunction with Emerging Technologies</td>
</tr>
<tr>
<td>Mont-Royal 1</td>
<td>Mont-Royal 2</td>
<td>Nolita 1</td>
</tr>
</tbody>
</table>

Session Co-Chairs:
- Bora Baloglu
- Amkor Technology
- Beth Rosen
- Intel Corporation

1. 8:00 a.m. - 3D-MiM (Must-in-Must) Technology for Advanced System Integration
 An-Jhih Su, Terry Ku, Chung-Hao Tsai, Kuo-Chung Yee, and Douglas Yu – Taiwan Semiconductor Manufacturing Company Ltd.

2. 8:25 a.m. - Construction on FO-MCM with C4 Bumps Built First Using Chip Last Assembly Technology
 Chih-Hsun Hsu, Wen-Yang Li, Chi-Jen Chen, Yih Jenn Jiang, Jui-Feng Tai, Chang-Fu Lin, and C. Key Chung – Siliconware Precision Industries Co., Ltd.

3. 8:50 a.m. - Feasibility Study of Fan-Out Panel-Level Packaging for Heterogeneous Integration
 Ching-Hsia Ko, Harry Yang, Cunnu Lin, Y.H. Chen – Umnicon Technology Corporation; John Liu, Ming Li, Penny Lo, R. So, Nelson Fan, Eric Kuan, Eric Ng, Y.F. Cheung – ASMT Pacific Technology; Cao Xi – Huawei Technologies Co. Ltd.; Iris Xu, Tony Chen, Zhang Li, Kim Hew, Te-Te Jiang; Chang Advanced Packaging Co. Ltd.; Zhin Lin, Chang, Jieh Yen Pan, Hong Hua Wu, Rozalia Beica and Marc Lin – Dow Chemical Company; Cao Pei Lin, N.C. Lee – Indium Corporation; Ming Taw, Jeffrey Lu, Rolly Lee – Hong Kong University of Science and Technology

4. 10:00 a.m. - Ultra-Thin FO Package-on-Panel Process for Mobile Application
 Hsiang-Tao Hsiao, Soon Wee Ho, Simon Siak Boon Lim, Leong Ching Wai, Ser Choong Chong, Pei Sang Sharon Lim, Yong Han, and Tai Chong Chai – Institute of Microelectronics A*STAR

5. 10:25 a.m. - Development of Wafer-Level Process for the Fabrication of Advanced Capacitive Fingerprint Sensor Using Embedded Silicon Fan-Out (eSiFO®) Technology
 Shuying Mu, Chengqian Wang, and Fengfeng Zheng – Huariant Technology (Kunshan) Electronics Co., Ltd.; Daquan Yu, Xiaobing Yang, Li Ma, Ma Li, and Wensong Liu – Huariant Technology (Xi’an) Electronics Co., Ltd.; Hong Xie – Rchip International; Jambu Yu, Jason Goodlett – Synapsis, USA

6. 10:50 a.m. - Three-Dimensional Integrated Circuit (3D-IC) Package Using Fan-Out Technology
 Jun Kyu Lee, Sang Yong Park, Young Ho Kim, Jae Cheon Lee, Sun Hyuk Lee, Chul Hyo Lee, Yong Tae Kwon, Chang Woo Lee, Jong Heon Kim, Nam Chul Kim, and Yun Hyun Sung – NEFES Corporation

7. 11:15 a.m. - Ultra-High-Density I/O Fan-Out Design Optimization with Signal and Power Integrity
 Chih-Yi Huang, Keng Tian Chang, Hung-Chun Kuo, Ming-Fong Jhong, Tsun-Lung Hsieh, Mi-Chun Hung, and Chen-Chao Wang – Advanced Semiconductor Engineering Inc.

Refreshment Break: 9:15 a.m. - 10:00 a.m. Exhibit Hall - Belmont 1 & 5

<table>
<thead>
<tr>
<th>Session 4: RDL and Additive Manufacturing</th>
<th>Session 5: 3D Printed Substrates for the Design of Compact RF Systems</th>
<th>Session 6: Fully Additively Manufactured Tunable Active Frequency Selective Surfaces with Integrated On-Package Solar Cells for Smart Packaging Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Committee: Packaging Technologies in conjunction with Emerging Technologies</td>
<td>Committee: Packaging Technologies in conjunction with Emerging Technologies</td>
<td>Committee: Packaging Technologies in conjunction with Emerging Technologies</td>
</tr>
<tr>
<td>Mont-Royal 1</td>
<td>Mont-Royal 2</td>
<td>Nolita 1</td>
</tr>
</tbody>
</table>

Session Co-Chairs:
- Kuldeep Johal
- Atotech
- C. S. Pramachandran

1. 8:00 a.m. - Submicron-Scale Cu RDL Patternning Based on Semi-Additive Process for Heterogeneous Integration
 Takamasa Takano, Hiroshi Kudo, Masaya Tanaka, and Miyuki Akazawa – Dai Nippon Printing Co., Ltd.

2. 8:25 a.m. - Smart Wire Bond Solutions for SIP and Memory Packages
 Basil Milton, Ashish Shah, Hui Xu, Odal Kwon, Gary Schulze, Ivy Qin – Kulicke and Soffa, USA; Nelson Wong – Kulicke and Soffa, Singapore

3. 8:50 a.m. - Preparation and Application of Cu-Ag Composite Solder Preforms for Power Electronic Packaging
 Li Liu, Shengfa Liu, Hu Xiang, and Dongqiao Zhang – Wuhan University of Technology; Zhaoxia Zhou, Stuart Robertson, Canyu Liu, and Changqing Liu – Loughborough University; Zhiwen Chen – Wuhan University

4. 10:00 a.m. - Au-Rich/Sn-Bi Interconnection in Chip-on-Module Package
 Jin Wang, Qian Wang, and Jin Cai – Tsinghua University; Xinnan Hou, Ke Du, and Lixin Zhao – GalaxyCore Inc.

5. 10:25 a.m. - The Properties of Cu Sinter Paste for Pressure Sintering at Low Temperature
 Jung-Lee Jo, Sinichi Yamauchi, Kei Anai, and Takahiko Sakaue – Mitsui Mining & Smelting Co., Ltd.

6. 10:50 a.m. - Low Temperature Sintering of Dendritic Cu Based Pastes for Power Semiconductor Device Interconnection
 Gang Li, Jie Fan, Suyan Liao, Pengli Zhu, Baoan Zhang, Tao Zhao, Rong Sun, and Ching-Fong Wong – Shenzhen Institutes of Advanced Technology

7. 11:15 a.m. - First Demonstration of a Low Cost/Customizable Chip Level 3D Printed Microjet Hotspot-Targeted Cooler for High Power Applications

8. 11:40 a.m. - New Development of Direct Bonding to Aluminum and Nickel Surfaces by Silver Sintering in Air Atmosphere
 Ly My Chew and Wolfgang Schmitt – Heraeus Deutschland GmbH & Co. KG; Tamira Stegmann, Erika Schwenk, and Monique Dubis – Hochschule Aschaffenburg University of Applied Sciences, Germany

9. 11:40 a.m. - Rapid Production of Customized 3D Electronics via Hybrid Additive Manufacturing Technology
 Ji Li, Yang Wang, Peeren Wang, Jiafeng He, Hanka Liu, and Gengzhao Xiang – Southeast University
Program Sessions: Wednesday, May 29, 8:00 a.m. - 11:40 a.m.

Session 1: Materials & Processing

Committee: Materials & Processing

1. 8:00 a.m. - Solid-Liquid InterDiffusion (SLID) Bonding, for Thermally Challenging Applications
 Knut E Aasmundtveit, Hoang-Vu Nguyen, and Andreas Larsson – University of South-Eastern Norway; Thi-Thuy Luu – Zimmer & Peacock; Torleif A Tollesen – TEGma

2. 8:25 a.m. - Fluxless Bonding Technique of Diamond to Copper Using Silver-Indium Multilayer Structure
 Roozbeh Sheikh, Yongjun Huo, and Chin C. Lee – University of California, Irvine

3. 8:50 a.m. - Formulation and Processing of Conductive Polysulfide Sealants for Automotive and Aerospace Applications
 Bo Song, Fan Wu, Kyoung-Sik Moon, and C.P. Wong – Georgia Institute of Technology

Refreshment Break: 9:15 a.m. - 10:00 a.m. Exhibit Hall - Belmont 1 & 5

4. 10:00 a.m. - Challenges and Approaches to Developing Automotive Grade 1/0 FCBBGA Package Capability
 Rajen Chai, Mike Kelly, Devnaran Balaraman - Amkor Technology, Inc. USA; Hideaki Shoji and Tomio Shirawan – J-Devices Corporation, Japan; KwangSeok Oh and Joon Young Park - Amkor Technology, Korea

5. 10:25 a.m. - Advanced Substrates for GaN-Based HEMTs Devices
 Anthony Cibié, Julie Widel, René Escoffier, Denis Blacher, Kremena Vladimirova, Jean-Philippe Colonna, Paul-Henri Haumesser, Stéphane Bécu, Perceval Coudrain, William Vandendaele, Jerome Bocarrat, Charlotte Gilot, Matthew Charles, Lea Di Ciocco – CEA-LETI

6. 10:50 a.m. - A New Reliable, Corrosion Resistant Gold-Palladium Coated Copper Wire Material
 Sandy Klenge, Robert Klenge, Jan Schichka, Tino Stephan, and Matthias Petzold – Fraunhofer IMWS; Motoki Eto, Nontoshi Araki, and Takashi Yamada – Nippon Micrometal Corporation

7. 11:15 a.m. - Ultrasonic-Accelerated Intermetallic Joint Formation with Composite Solder for High-Temperature Power Device Packaging
 Hongjun Ji, Mingyu Li, Weimei Zhao, and Wenwu Zhang – Harbin Institute of Technology

Session 2: Bonding Manufacturing Technologies

Committee: Assembly & Manufacturing Technology

1. 8:00 a.m. - Comprehensive Study of Copper Nano-Paste for Cu-Cu Bonding
 Ser Choong Chong and Pei Sung Lim Sharon – Institute of Microelectronics A*STAR

2. 8:25 a.m. - Enhanced Performance of Laser-Assisted Compression Bonding (LACB) Compared with Thermal Compression Bonding (TCB) Technology
 Kwang Seong Choi, Yong-Sung Eom, Seok Hwan Moon, Jiho Joo, and Iesseul Jeong – Electronics and Telecommunications Research Institute; Kwangsoo Lee, Jung Hak Kim, and Ju hyeon Kim – LG Chem; Gi Sang Yoon – RITECH; Kwang-Ho Lee and Chul-Hoon Lee – Inha University, Geun-Sik Ahn, and Moo-Sup Shim - Protec

3. 8:50 a.m. - A Study of 3D Packaging Interconnection Performance Affected by Thermal Diffusivity and Pressure Transmission
 Jin-San Jung, Hyeong Gi Lee, Ji-Min Kim, Yong-Jin Park, Ji-Ui Yu, Yong Sung Park, Jun Su Lim, Hyun-Seok Choi, Sung-Il Cho, Dong wook Kim, and Sang-Ho An – Samsung Electronics Company, Ltd.

4. 10:00 a.m. - Vertical Laser Assisted Bonding for Advanced “3.5D” Chip-Packaging
 Andrej Kolbassow, Matthias Fetske and Georg Friedrich – Pac Tech GmbH; Timo Kubisch and Thorsten Teutsch – Pac Tech USA

5. 10:25 a.m. - Optimization of a BEOL Aluminum Deposition Process Enabling Wafer Level AI-Thermo-Compression Bonding
 Sebastian Schulze, Matthias Wiestruck, Mirko Frischke, and Mehmet Kaynak – Innovations for High Performance Microelectronics; Peter Keregesi, Helmut Kurz, and Bernhard Rehban – EV Group, Inc.

6. 10:50 a.m. - Self-Assembly Process for 3D Die-to-Wafer Using Direct Bonding: A Step Forward Toward Process Automatisation
 Amandine Jouve, Loïc Sanchez, Clément Gastan, Maxence Laugier, Emmanuel Rolland, Brigitte Monmayeur, Rémi Franasi, Frank Fourmel, and Severine Chermay – CEA-LETI

7. 11:15 a.m. - A Single Bonding Process for Diverse Organic-Inorganic Integration in IoT Devices
 Tito H. Yang, Yu-Shan Chiu, Hai-Yang Yu, and C. Robert Kao – National Taiwan University; Akitsu Shigetou – National Institute for Materials Science

Session 3: Emerging Flexible Hybrid Electronics

Committee: Emerging Technologies

1. 8:00 a.m. - Stretchable and Printable Medical Dry Electrode Arrays on Textile for Electrophysiological Monitoring
 Yougen Hu, Hui Wang, Yaoxu Xieng, Han Gu, Pengli Zhu, Guangli Li, and Rong Sun – Shenzhen Institutes of Advanced Technology; Ommeaymen Sheikhnejad – ACZT Research GmbH; Ching-Ping Wong – Georgia Institute of Technology

2. 8:25 a.m. - Screen-Printed Flexible Coplanar Waveguide Transmission Lines: Multi-Physics Modeling and Measurement

3. 8:50 a.m. - Inkjet-Printed Filtering Antenna on a Textile for Wearable Applications
 Hisan-Ling Lee and Chun-Hsiang Chang – Chang Gung University; Cheng-Lin Cho – National Tsing Hua University

4. 10:00 a.m. - Mechanical and Electrical Characterization of FOWLP-Based Flexible Hybrid Electronics (FHE) for Biomedical Sensor Application
 Yuki Suzuki, Qian Zhengyang, Aiselle Jacquemond, Noriyuki Takahashi, Hisashi Kno, Tetsu Tanaka, and Takafumi Fukushima – Tohoku University

5. 10:25 a.m. - A Wearable Fingernail Deformation Sensing System and Three-Dimensional Finite Element Model of Fingertip
 Katsuyuki Sakuma, Bucknell Webb, Rajeev Narayanan, Avner Abrami, Jeff Rogers, John Knickerbocker, and Stephen J. Hesig – IBM Thomas J. Watson Research Center

6. 10:50 a.m. - Heterogeneous Integration of a Fan-Out Wafer-Level Packaging Based Foldable Display on Elastomeric Substrate

7. 11:15 a.m. - A Study on the Flexible Chip-on-Fabric (COF) Assembly Using Anisotropic Conductive Films (ACFs) Materials
 Seung-Yoon Jung and Kyung-Wook Paik – Korea Advanced Institute of Science and Technology
Session 7: Advances in Flip Chip Packaging

Committee: Packaging Technologies

Mont-Royal 1

Session Co-Chairs: Mike Gallagher
DuPont Electronics & Imaging
Daniel Baldwin – H.B. Fuller Company

1. 1:30 p.m. - Laser Releasable Temporary Bonding Film with High Thermal Stability
Yong-suk Yang, Kyo-sung Hwang, and Robin Gorrell – 3M

2. 1:55 p.m. - Ultra Large Area SIPs and Integrated mmWave Antenna Array Module for 5G mmWave Outdoor Applications
Pouya Taleb Baydokhti, Siddarth Dalma, Trang Thai, Raanan Sover, Sharon Tal – Intel Corporation

3. 2:20 p.m. - Hybrid Approach for Large Size FC-BGA to Enhance Thermal and Electrical Performance Including Power Delivery
Heeseok Lee, Yunheok Im, Junghwa Kim, Jisoo Hwang, James Jeong, Youngsang Cho, Heejung Choi, and Youngm Shin – Samsung Electronics Company, Ltd.

4. 3:30 p.m. - Package-on-Package Micro-BGA Microstructure Interaction with Bond and Assembly Parameter
Pascale Gagnon and Clément Fortin – IBM Canada Limited; Thomas Weis – IBM Systems

5. 3:55 p.m. - Low-Cost Flip-Chip Stack for Partitioning Processing and Memory
Andy Heing and Fabian Hopsch – Fraunhofer IIS/EAS

6. 4:20 p.m. - High-Density Ultra-Thin Organic Substrate for Advanced Flip-Chip Package

7. 4:45 p.m. - Impact of Low Temperature solder on Electronic package Dynamic Warpage Behavior and Requirement
Wei Keat Loh – Intel Corporation; Ron W. Kulterman – Flex Ltd.; Haley Fu – INEMI; Chih Chung Hsu – CoreTech System (Moldex3D)

Session 8: Material and Process Trends in FOWLP and PLP

Committee: Materials & Processing

Mont-Royal 2

Session Co-Chairs: Tanja Braun
Fraunhofer IZM
Yi Li – Intel Corporation

1. 1:30 p.m. - Laser Releasable Temporary Bonding Film with High Thermal Stability
Yong-suk Yang, Kyo-sung Hwang, and Robin Gorrell – 3M

2. 1:55 p.m. - Design and Demonstration of 1um Low Resistance RDL Using Panel Scale Processes for High-Performance Computing Applications
Bartien DeFrutos, Chandrasekharan Nair, Varun Rajagopal, Jeneta Kannan, Emanuel Surles, Fuhan Lu, Mohanraj Gangam, Katherinormal, and Raul Tumala – 3D Systems Packaging Research Center, Georgia Institute of Technology, Aya Morozawa and Atsushi Kato – Tokyo Ohka Kogyo Co., Ltd.

3. 2:20 p.m. - Advances in Temporary Carrier Technology for High-Density Fan-Out Device Build-Up

4. 3:30 p.m. - Development of Novel Low-Temperature Curable Positive-Tone Photosensitive Dielectric Materials with High-Reliability
Yutaro Koyama, Yu Shoji, Keika Hashimoto, Yuki Masuda, Hitoshi Araki, and Masao Tomikawa – Toray Industries, Inc.

5. 3:55 p.m. - Highly Reliable Photosensitive Negative-Tone Polyimide with Low Cure Shrinkage
Daisaku Matsukawa, Hiroko Yotsuyanagi, Shiori Sakaihara, Noryuki Yamazaki, Tetsuya Enomoto, and Takeharu Motobe – Hitachi Chemical DuPont MicroSystems, Ltd., Japan

6. 4:20 p.m. - High Rate and Low Damage Etching Method as Pre Treatment of Seed Layer Sputtering for Fan Out Panel Level Packaging
Tetsushi Fujinaga – ULVAC, Inc.

7. 4:45 p.m. - Investigating and Methods Using Various Release and Thermoplastics Bonding Materials to Reduce Die Shift and Wafer Warpage for eWLB Chip-First Processes
Michelle Fowler and John P. Massey – Brewer Science, Inc.; Tanja Braun, Steve Voges, Robert Gershhardt, and Markus Wohrmann – Fraunhofer Institute IZM

Session 9: Wearables and Thin-Package Reliability and Chip Package Interaction

Committee: Thermal/Mechanical Simulation & Characterization

Nolita 1

Session Co-Chairs: Przemyslaw Greielska
Robert Bosch GmbH
Yong Liu – ON Semiconductor

1. 1:30 p.m. - Effect of Charging Cycle Elevated Temperature Storage and Thermal Cycling on Thin Flexible Batteries in Wearable Applications
Pradeep Lall and Amrit Abrol – Auburn University; Ben Leever – US AFRL; Scott Miller – NextFlex Manufacturing Institute

2. 1:55 p.m. - Bladder Inflation Stretch Test Method for Reliability Characterization of Wearable Electronics
Benjamin G. Stewart and Suresh K. Sitaraman – Georgia Institute of Technology

3. 2:20 p.m. - Study of BEOL Failure Mode in Flip-Chip Packages at High-Temperature Conditions
Wei Wang, Yangyang Sun, Xuefeng Zhang, Lejun Wang, Lily Zhao, Mark Schwarz, Bill Stone, and Ahmer Syed – Qualcomms Technologies, Inc.

4. 3:30 p.m. - A Novel Metal Scheme and Bump Array Design Configuration to Enhance Advanced Si Packages CPI Reliability Performance by Using Finite Element Modeling Technique
Kuo-Chin Chang, Ming-Ji Lui, Steven Hsu, Hao-Chun Liu, Yen-Kun Lai, Sheng-Han Tsai, and Chieh-Hao Hsu – Taiwan Semiconductor Manufacturing Company Ltd.

5. 3:55 p.m. - Assessment of CMP Fill Pattern Effect on the Thermal Performance of Interconnects in Integrated Circuits BEOL
Assaad Helou and Peter Raad – Southern Methodist University; Archana Venugopal – Texas Instruments, Inc.

6. 4:20 p.m. - Three-Dimensional Simulation of the Thermo-Mechanical Interaction Between the Micro-Bump Joints and Cu Protrusion in Cu-Filled TSVs of the High Bandwidth Memory (HBM) Structure
Je-Ying Zhou, Shu-Biao Liang, Cheng Wei, Wen-Kai Le, Chang-Bo Ke, Min-Bo Zhou, Xiao Ma, and Xin-Ping Zhang – South China University of Technology
<table>
<thead>
<tr>
<th>Session</th>
<th>Topic</th>
<th>Time</th>
<th>Presenters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session 10: Dicing and Encapsulation Technologies</td>
<td>Nolita 2</td>
<td>1:30 p.m. - A More Than Moore Enabling Wafer Dicing Technology</td>
<td>Jeroen van Borkulo, Roger Evertsen, and Richard van der Stam – ASM Pacific Technologies Inc.</td>
</tr>
<tr>
<td>Session 11: Automotive and Harsh-Environment Reliability</td>
<td>Nolita 3</td>
<td>1:30 p.m. - Effect of Substrate Preheating Treatment on Thermal Reliability and Micro-Structure of Ag Paste Sintering on Au Surface Finish</td>
<td>Zheng Zhang, Chuantong Chen, and Katsuaki Suganuma – Osaka University; Seigo Kurosaka – C. Uyemura & Co., Ltd.</td>
</tr>
<tr>
<td>Session 12: Advanced Photonic Devices and Packaging</td>
<td>Yaletown 1</td>
<td>1:30 p.m. - Micro-Fabricated SERF Atomic Magnetometer for Weak Gradient Magnetic Field Detection</td>
<td>Xiang Yue, Jintang Shang, and Chen Ye – Southeast University</td>
</tr>
<tr>
<td>Session Co-Chairs: Garry Cunningham</td>
<td>Session Co-Chairs: Sandy Klongel</td>
<td>Session Co-Chairs: Philipp Bernabe</td>
<td>JHU/APL; Fraunhofer Institute for Microstructure of Materials and Systems; CEA Leti</td>
</tr>
<tr>
<td>Texas Instruments</td>
<td>Texas Instruments, Inc.</td>
<td>Texas Instruments, Inc.</td>
<td>Gordon Eigner; Technische Hochschule Ingolstadt</td>
</tr>
<tr>
<td>4. 3:30 p.m. - Active Control of NCF Fillet Shape for 3D CoW by Multi Beam Laser Bander</td>
<td>4. 3:30 p.m. - Reliability Investigation of Extremely Large Ratio Fan-Out Wafer-Level Package With Low Ball Density for Ultra-Short-Range Radar</td>
<td>4. 3:30 p.m. - Integration and Characterization of InP Die on Silicon Interconnect Fabric</td>
<td>Keku Ueno, Kaotaka Honda, Tsuboshi Ogawa, and Toshitsa Nonaka – Hitachi Chemical Company, Ltd.</td>
</tr>
<tr>
<td>6. 4:20 p.m. - Reliability and Benchmark of 2.5D Non-Molding and Molding Technologies</td>
<td>6. 4:20 p.m. - Prognostication of Accrued Damage and Impending Failure Under Temperature-Vibration in Lead Free Electronics</td>
<td>6. 4:20 p.m. - Vertically Stacked and Directionally Coupled Cavity-Resonator-Integrated Grating Couplers for Integrated-Optic Beam Steering</td>
<td>Yu-Hsiang Hsiou, Che-Ming Hsu, Yi-Sheng Lin, and Chien-Lin Chang Chen – Advanced Semiconductor Corporation; Deschamps, Alexi Bedoin, and David Henry – CEA Leti</td>
</tr>
<tr>
<td>Yu-Hsiang Hsiou, Che-Ming Hsu, Yi-Sheng Lin, and Chien-Lin Chang Chen – Advanced Semiconductor Corporation; Group, Inc.</td>
<td>Pradeep Lall, Tony Thomas, and Jeff Suhling – Auburn University; Ken Blecker – US Army ARDEC</td>
<td>Shogo Ura and Junishi Inoue – Kyoto Institute of Technology; Kenji Kintaka – National Institute of Advanced Industrial Science and Technology</td>
<td></td>
</tr>
<tr>
<td>7. 4:45 p.m. - Laser-Induced Trench Design, Optimisation and Validation for Restricting Capillary Underfill Spread in Advanced Packaging Configurations</td>
<td>7. 4:45 p.m. - Electrochemical Impedance Spectroscopy (EIS) for Monitoring the Water Load on PCBAs under Cycling Condensing Conditions to Predict Electrochemical Migration Under DC Loads</td>
<td>7. 4:45 p.m. - CIB(Chip-in-Board) Optical Engine Module Using Advanced Fan-Out Package Technology</td>
<td>Gu Li and David Danovitch – Université de Sherbrooke; Eric Turcotte – IBM Canada Ltd.</td>
</tr>
<tr>
<td>Gu Li and David Danovitch – Université de Sherbrooke; Eric Turcotte – IBM Canada Ltd.</td>
<td>Simone Lauser and Theresia Richter – Robert Bosch GmbH; Verdingovas Vadimas and Rajan Ambat – Technical University of Denmark</td>
<td>Sang Yong Park, JU Hyun Nam, Ji Ni Shim, Jun Kyu Lee, Yong Tae Kwon, Chang Wook Lee, Jong Heon Kim, and Nam Chul Kim – NEPES Corporation</td>
<td></td>
</tr>
<tr>
<td>Session Co-Chairs:</td>
<td>Session Co-Chairs:</td>
<td>Session Co-Chairs:</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>Peng Su</td>
<td>Nanyang Technological University</td>
<td>Florida International University</td>
<td></td>
</tr>
<tr>
<td>Juniper Networks</td>
<td>Tom Gregorisch</td>
<td>Amit P. Agrawal</td>
<td></td>
</tr>
<tr>
<td>Subhash L. Shinde</td>
<td>Zeiss Semiconductor Manufacturing Technology</td>
<td>Microsemi Corporation</td>
<td></td>
</tr>
<tr>
<td>University of Notre Dame</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Program Sessions: Thursday, May 30, 8:00 a.m. - 11:40 a.m.

Session 13: Technologies Enabling 3D and Heterogeneous Integration
- **Peng Su**
- **Juniper Networks**
- **Subhash L. Shinde**
- **University of Notre Dame**

Session 14: Fine-Pitch Solderless Bonding
- **Chuan Song Tan**
- **Nanyang Technological University**
- **Tom Gregorisch**
- **Zeiss Semiconductor Manufacturing Technology**

Session 15: High-Bandwidth Packaging
- **Chuan Song Tan**
- **Nanyang Technological University**
- **Tom Gregorisch**
- **Zeiss Semiconductor Manufacturing Technology**

Refreshment Break: 9:15 a.m. - 10:00 a.m. Exhibit Hall - Belmont 1 & 5

Session 4: 10:00 a.m. - System on Integrated Chips (SoIC (TM)) for 3D Heterogeneous Integration
- **Ming-Fa Chen**
- **Fang-Cheng Chen**
- **Amit P. Agrawal**
- **Siliconware Precision Industries Co., Ltd.**

Session 5: 10:25 a.m. - Die-to-Wafer (D2W) Processing and Reliability for 3D Packaging of Advanced Node Logic
- **Luke England**
- **Daniel Fisher**
- **Kate Rivera**
- **Bill Guthrie**
- **GLOBALFOUNDRIES**
- **Ping-Jui Kuo**
- **Chang-Chi Lee**
- **Che-Ming Hsu**
- **Fan-Yu Min**
- **Kuo-Chang Kang**
- **Chen-Yuan Weng**
- **Taiwan Semiconductor Manufacturing Company Ltd.**

Session 6: 10:50 a.m. - Enabling Ultra-Thin Die to Wafer Hybrid Bonding for Future Heterogeneous Integrated Systems
- **Alvin Phommahaxay**
- **Samuel Suhard**
- **Peng Su**
- **Texas Instruments Inc.**

Session 7: 11:15 a.m. - Making Sense of the Novel System-on-Package Technology (ICE-SIP) for Mobile and 3D High-End Packages
- **Taejo Hwang**
- **DanKyoung Suk**
- **Junjie Li**
- **Eric Beyer**
- **IMEC**

Committee: Packaging Technologies

Committee: Interconnections

Committee: High-Speed, Wireless & Components
Program Sessions: Thursday, May 30, 8:00 a.m. - 11:40 a.m.

<table>
<thead>
<tr>
<th>Session 16: Advanced Materials for High-Speed Electronics</th>
<th>Session 17: Materials and Design for Reliability of Next-Generation Packages</th>
<th>Session 18: Warpage and Material Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Committee: Materials & Processing</td>
<td>Committee: Applied Reliability</td>
<td>Committee: Thermal/Mechanical Simulation & Characterization</td>
</tr>
<tr>
<td>Nolita 2</td>
<td>Nolita 3</td>
<td>Yaletown 1</td>
</tr>
<tr>
<td>Session Co-Chairs: Yoichi Taira Keio University</td>
<td>Session Co-Chairs: Varugheese Mathew NXP Semiconductors Lakshmi R. Ramanathan Microsoft Corporation</td>
<td>Session Co-Chairs: Pradeep Lall Auburn University Karsten Meier Technische Universität Dresden</td>
</tr>
<tr>
<td>1. 8:00 a.m. - Low-Loss Glass Substrates Formulated With a Variety of Dielectric Characteristics for mm Wave Applications Kazutaka Hayashi, Nobutaka Kidera, and Yochoro Sato – AQC Inc.</td>
<td>1. 8:00 a.m. - Highly (1 1 1)-Oriented Nanotwinned Cu for High Fatigue Resistance in Fan-Out Wafer-Level Packaging Yu-Jin Li, Chih-Han Theng, I-Hsin Tseng, and Chih Chen – National Chiao Tung University; Benson Lin and Chia-Cheng Chang – MediaTek Inc.</td>
<td>1. 8:00 a.m. - Improved Finite Element Modeling of Moisture Diffusion Considering Discontinuity at Material Interfaces in Electronic Packages Lulu Ma and Xuejun Fan – Lamar University; Rahul Joshi and Keith Newman – Advanced Micro Devices, Inc.</td>
</tr>
<tr>
<td>4. 10:00 a.m. - The Highly Effective EMI Shielding Materials for Electric and Magnetic Fields Over the Wide Range of Frequency in Near-Field Region Yoon-Hyun Kim, Kisu Joo, Kyu Jae Lee, Jung Woo Hwang, Se Young Jeong Seung Jae Lee, and Hyun Ho Park – Ntrium Inc.</td>
<td>4. 10:00 a.m. - The How and Why of Biased Humidity Tests with Copper Wire Amar Mavinkurve, Rene Rongen, Leon Goumans, Mark Luke Farnuga, Erik van Olst, Olfa O’Halloran, and Michel van Soestbergen – NXP Semiconductors</td>
<td>4. 10:00 a.m. - Peridynamics for Predicting Thermal Expansion Coefficient of Graphene Ergodan Madenog, Atila Barut, and Mehmet Dorduncu – The University of Arizona</td>
</tr>
<tr>
<td>5. 10:25 a.m. - Low-Loss NCF Material for High-Frequency Device Kazutaka Honda, Keiko Ueno, Tsuyoshi Ogawa, and Toshihisa Nonaka – Hitachi Chemical Company, Ltd.</td>
<td>5. 10:25 a.m. - Twist Testing for Flexible Electronics Justin Chow and Suresh Sitaraman – Georgia Institute of Technology; Jeffrey Meth – DuPont</td>
<td>5. 10:25 a.m. - Machine Learning Approach to Improve Accuracy of Warpage Simulations Cheryl Selvanayagam, Pham Luu Trung Duong, and Nagarajan Raghavan – Singapore University of Technology and Design; Rathin Mandal – Advanced Micro Devices Inc.</td>
</tr>
<tr>
<td>6. 10:50 a.m. - In-Situ Redox Nanowelding of Copper Nanowires with Surficial Oxide Layer as Solder for Flexible Transparent Electromagnetic Interference Shielding Xiawen Liang, Jiawei Zhou, Gang Li, Tao Zhao, Pengli Zhu, and Rong Sun – Shenzhen Institutes of Advanced Technology; Ching-Ping Wong – Georgia Institute of Technology</td>
<td>6. 10:50 a.m. - Mechanical Properties and Microstructural Fatigue Damage Evolution in Cyclically Loaded Lead-Free Solder Joints Sian Su, Mohd Amirul Hoque, Md Mahmudur Chowdhury, Si’i’d Hamada, Jeffrey C. Suhling, John L. Evans, and Pradeep Lall – Auburn University</td>
<td>6. 10:50 a.m. - Study on Warpage of Fan-Out Panel Level Packaging (FO-PLP) Using Gen-3 Panel Fa Xing Che, Kazunori Yamamoto, Vempati Srinivasa Rao and Vasarla Nagendra Sekhar – Institute of Microelectronics A*STAR</td>
</tr>
<tr>
<td>7. 11:15 a.m. - Compartamental EMI Shielding Material with Jet-Dispensed Material Technology Xuan Hong, Qizhuo Zhuo Zhuo, Xinpei Cao, Dan Maslyk, Noah Ekstrom, Juliet Sanchez, Selene Hernandez, and Jinu Choi – Henkel Corporation</td>
<td>7. 11:15 a.m. - Reliability Studies of Silicon Interconnect Fabric Nilofar Shakoorzadeh, Sva Chandra Jangam, Pranav Ambhore, Amir Hanna, and Subramanian Iyer – University of California, Los Angeles; Kayzar Rahim – Global Foundries; Han Chien – National Chiao Tung University</td>
<td>7. 11:15 a.m. - Mechanical Properties of Intermetallic Compounds at Elevated Temperature by Nanoindentation Fan Yang, Sheng Liu, and Zhiren Chen – Wuhan University; Zhaoxia Zhou, Canyu Liu, and Changqing Liu – Loughborough University; Li Liu – Wuhan University of Technology</td>
</tr>
<tr>
<td>Session 19: MEMS, Sensors, and IoT</td>
<td>Session 20: Fan-Out and Heterogeneous Integration</td>
<td>Session 21: 5G, mm-Wave, and Antenna-in-Package</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Committee: Packaging Technologies</td>
<td>Committee: Interconnections</td>
<td>Committee: High-Speed, Wireless & Components</td>
</tr>
<tr>
<td>Mont-Royal 1</td>
<td>Mont-Royal 2</td>
<td>Nolita 1</td>
</tr>
</tbody>
</table>

Session 1: 1:30 p.m. - A MEMS Microphone in a FOWLP

Session 2: 1:55 p.m. - Fan-Out Wafer Level Packaging - A Platform for Advanced Sensor Packaging

Tanja Braun, Karl-Friedrich Becker, Ole Hoelck, Steve Voges, Ruben Kahle, Pascal Graup, Markus Wollhorn, and Rolf Aschenbrener – Fraunhofer IZM; Marc Dressigacker, Martin Schneider-Ramelow, and Klaus-Dieter Lang – Technical University Berlin

Session 3: 2:20 p.m. - 3D-MID Evaluation and Validation for Space Applications

Etienne Hirt and Klaus Ruszka – Art of Technology AG; Benedikt Wigget, Maximilian Barth, Rafat Saleh, and Florian Janek – Hahn Schickard; Ernst Müller – Universität Stuttgart Institute of Microintegration

Session 4: 3:30 p.m. - High-Temperature Pressure Sensor Package and Characterization of Thermal Stress in the Assembly up to 500 °C

Nivazhagan Subbiah, Qingming Feng, and Juergen Wilde – University of Freiburg; Gudrun Bruckner – CTR AG, Austria

Session 5: 3:55 p.m. - Development of 3D WL CSP with Black Shielding for Optical Finger Print Sensor for the Application of Full Screen Smart Phone

Daquan Yu, Yichao Zou, Xinu Xiu, Aihua Shi, Xiaobing Yang and Zhiyi Xiao – Huanian Technology (Kunshan) Electronics Co., Ltd.

Session 6: 4:20 p.m. - Micro Fountain-Like Resonators

Jianfeng Zhang, Jintang Shang, Bin Luo, and Zhaoxi Su – Southeast University

Session 7: 4:45 p.m. - Novel Additively Manufactured Packaging Approaches for 5G/mm-Wave Wireless Modules

Tong-Hong Lin, Aline Eid, Jimmy Hester, Bijan Tehrani, and Manos Tentzeris – Georgia Institute of Technology; Jo Bito – Texas Instruments, Inc.
Program Sessions: Thursday, May 30, 1:30 p.m. - 5:30 p.m.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Committee: Materials & Processing</td>
<td>Committee: Photonics in conjunction with Interconnections</td>
<td>Committee: Applied Reliability</td>
</tr>
<tr>
<td>Nolita 2</td>
<td>Nolita 3</td>
<td>Yaletown 1</td>
</tr>
<tr>
<td>Session Co-Chairs:</td>
<td>Session Co-Chairs:</td>
<td>Session Co-Chairs:</td>
</tr>
<tr>
<td>Kimberly Yass</td>
<td>Takaaki Isigure</td>
<td>Scott Savage</td>
</tr>
<tr>
<td>Brewer Science</td>
<td>Keio University</td>
<td>Medtronic Microelectronics Center</td>
</tr>
<tr>
<td>Mikul Mito</td>
<td>Dingyou Zhang</td>
<td>Pel-Have Tsai</td>
</tr>
<tr>
<td>EMD Performance Materials</td>
<td>Broadcom Inc.</td>
<td>Taiwan Semiconductor Manufacturing Company, Ltd.</td>
</tr>
</tbody>
</table>

1. 1:30 p.m. - Temporary SiC-SiC Wafer Bonding Compatible With High Temperature Annealing
Fengwen Mu and Tadatomo Suga – The University of Tokyo; Myuki Uomoto and Takehito Shimatsu – Tohoku University

1. 1:30 p.m. - A Highly Reliable 1.4um Pitch Via-last TSV Module for Wafer-to-Wafer Hybrid Bonded 3D-SOC Systems
Stefaan Van Huylenbroeck, Joeri De Vos, Zaid El-Mekki, Geraldine Jameson, Nina Tutunyan, Kartik Muga, Michele Succhi, Andy Miller, Gerald Beyer, and Eric Beyne – IMEC

1. 1:30 p.m. - Effects of In and Zn Double Addition on Eutectic Sn-38Bi Alloy
Shiq Zhou, Yu-An Shen, and Hiroshi Nishikawa – Osaka University; Tiffani Uresti, Vasanth Shunmugasamy, and Bilal Mansoor – Texas A&M University at Qatar

2. 1:55 p.m. - Ultrathin Glass to Ultrathin Glass Bonding Using Laser Sealing Approach
Messoud Bedjaoui, Johnny Amiran, and Jean Brun – CEA-LETI

2. 1:55 p.m. - Nanoscale Topography Characterization for Direct Bond Interconnect
Bongsu Lee, Pawel Mrozek, Gill Fountain, John Posthill, Jeremy Theil, Guilian Gao, Rajesh Katkar, and Laura Mirkarmi – Xerox Corporation

2. 1:55 p.m. - Microstructural Evolution in SAC+X Solders Subjected to Aging
Jing Wu, Jeffrey C. Suhling, and Pradeep Lall – Auburn University

3. 2:20 p.m. - Development of Resins for Bumpless Interconnects and Wafer-on-Wafer (WOW) Integration
Naoki Araki and Shinya Maetani – Dacel Corporation; Kim Young Suk and Shoichi Kodama – Disco Corporation; Takayuki Ohba – Tokyo Institute of Technology

3. 2:20 p.m. - Fully-Filled, Highly-Reliable Fine-Pitch Interconnects With TSV Aspect Ratio >10 for Future 3D-LSI/IC Packaging

3. 2:20 p.m. - Microstructure Signature Evolution in Solder Joints, Solder Bumps, and Micro-Bumps Interconnection in a Large 3.5D FCGBGA Package During Thermo-Mechanical Cycling
Arman Ahan, Andy Hsiao, Tae-Kyu Lee, and Greg Baty – Portland State University; Peng Su – Juniper Networks

4. 3:30 p.m. - Development of Novel Photosensitive Dielectric Material for Reliable 2.1D Package

4. 3:30 p.m. - 3D Silicon Photonics Interposer for Tb/s Optical Interconnections in Data Centers With Double-Side Assembled Active Components and Integrated Optical and Electrical Through Silicon Via on SOI
Bogdan Sirbu, Yann Edrichammer, Hermann Oppermann, and Tidja Tekei – Fraunhofer IZM; Victor Sidobor and Jochen Kraft – AMS AG; Xin Yin and Johan Baetens – IMEC; Christin Neumeier – VERTILAS GmbH; Francisco Soares – Fraunhofer HHI

4. 3:30 p.m. - Long-Term Reliability of Solder Joints in 3D ICs Under Near-Application Conditions
Omar Ahmed, Golareh Jalkivand, Hector Fernandez, and Tingfei Jiang – University of Central Florida; Peng Su – Juniper Networks; Tae-Kyu Lee – Portland State University

5. 3:55 p.m. - High Reliability Solder Resist With Strong Adhesion and High Resolution for High Density Packaging

5. 3:55 p.m. - Flip-Chip III-V-to-Silicon Photonics Interconnects for Optical Sensor
Yves Martin, Jason Orcutt, Chi Xiong, Laurent Schares, Tymon Barwicz, Martin Glodde, Swetha Kamalpurkar, Eric J. Zhang, and William M.J. Green – IBM Corporation; Victor Dolores-Calzada, Martin Moelvik, and Ariane Sigmund – Fraunhofer HHI

5. 3:55 p.m. - Experimental Investigation of the Correlation between a Load-Based Metric and Solder Joint Reliability of BGA Assemblies on System Level
Fabian Schemp, Marc Dressler, Daniel Kraetschmer, and Friederike Loerke – Robert Bosch GmbH; Juergen Wilde – University of Freiburg, IMTEK

6. 4:20 p.m. - Method for Mitigating the Warpage of Ultra-thin FC-CSPs by Controlling of EMC Properties
Chika Arayama, Takahiro Akihisa, Yasunari Tomita, and Naoaki Kanagawa – Panasonic Corporation

6. 4:20 p.m. - Extremely Low-Profile Single Mode Fiber Array Coupler Suitable for Silicon Photonics

6. 4:20 p.m. - Fatigue Life Predictive Model Development for Decoupling Capacitors
Krishna Tunga, Joseph Ross, Kamal Sikka, and Bakul Parikh – IBM Corporation

7. 4:45 p.m. - Innovative Socketable and Surface-Mountable BGA Interconnections
Omkar Gupte, Kristie Teoh, Vanessa Smet, and Rao Tummala – Georgia Institute of Technology; Gregorio Murtagian – Intel Corporation

7. 4:45 p.m. - Micro-Lens Array Assembly for Optical Organic Substrates

7. 4:45 p.m. - A Study of Substrate Models and Its Effect on Package Warpage Prediction
Van Lai Pham, Jiefeng Xu, Jing Wang, Huyuan Wang and Seungbae Park – Binghamton University; Charandeep Singh – Coming, Inc.
Program Sessions: Friday, May 31, 8:00 a.m. - 11:40 a.m.

<table>
<thead>
<tr>
<th>Session 25: Wafer Level Packaging and Fan-In/Fan-Out Structures & Materials</th>
<th>Session 26: High-Speed Signaling for High-Performance Computing and Memory</th>
<th>Session 27: Advanced Biosensors and Bioelectronics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Committee: Packaging Technologies</td>
<td>Committee: High-Speed, Wireless & Components</td>
<td>Committee: Emerging Technologies</td>
</tr>
<tr>
<td>Mont-Royal 1</td>
<td>Mont-Royal 2</td>
<td>Nolita 1</td>
</tr>
</tbody>
</table>

Session Co-Chairs:
- Albert Lan: Applied Materials
- Andrew Kim: Intel Corporation
- Civit Tzau: Ford Motor Company
- Vivian Chu: Intel Corporation
- Ted Keppler: Texas Instruments
- Jeongik Chung: Samsung Electronics
- Yifan Huang: Amphenol ICC
- Stephen Smith: Amphenol ICC

Session 1: 8:00 a.m. - 3D Fan-Out Package Technology with Photosensitive Through Mold Interconnects
Kantaro Morii, Soichi Yamashita, Takaumnu Fukuda, Masahiro Sekiguchi, Hirokazu Ezawa, and Shuzo Akejima – Toshiba Corporation

Session 2: 8:25 a.m. - Effects of the Materials Properties of Epoxy Molding Films (EMFs) on Fan-Out Packages (FOPs) Characteristics

Session 3: 8:50 a.m. - Mechanism of Moldable Underfill (MUF) Process for RDL-1st Fan-Out Panel Level Packaging (FOPLP)
Lin Bu, F.X. Che, Vempati Srinivasa Rao, and Xiaowu Zhang – Institute of Microelectronics A*STAR

Session 4: 10:00 a.m. - Open CAPI Memory Interface Signal Integrity Study for High-Speed DRAM/DfM Channel with Standard Loss FR-4 Material and SNIA SST-TA-1002 Connector
Biao Cai, Jose Hejase, Kyle Giesen, Junyan Tang, Brian Connolly, Kyu Hyoun Kim, and Daniel Dreps – IBM Corporation; Zhiheng Fan, Rocky Huang, Luoyin Yi, Qiaoli Chen, Yifan Huang, and Stephen Smith - Amphenol ICC

Session 5: 10:25 a.m. - Study of Board Level Reliability of eWLB (Embedded Wafer-Level BGA) for 0.35mm Ball Pitch

Session 6: 10:50 a.m. - Board Level Reliability Study of Fan-Out Single Die Package with 350um Bump Pitch
Cheh Lung Lai, Gu Yan Lin, Tz-Yuan Chao, Yih-Sin Chen, and Feng-Lung Chien – Siliconware Precision Industries Co., Ltd.

Session 7: 11:15 a.m. - Direct Heterogeneous Bonding of SiC to Si, SiO2, and Glass for High-Performance Power Electronics and Bio-MEMS
Jikai Xu, Chenxi Wang, Qishu Kang, Shicheng Zhou, and Yanhong Tian – Harbin Institute of Technology

Refreshment Break: 9:15 a.m. - 10:00 a.m. Mont-Royal Commons

Session 4: 10:00 a.m. - Study of the Board Level Reliability Performance of a Large 0.3 mm Pitch Wafer-Level Package
Bernd Waithas, Jan Proschwitz, Christoph Pietrzyga, Thomas Wagner, and Beth Kezer – Intel Deutschland GmbH

Session 5: 10:25 a.m. - Study of Board Level Reliability of eWLB (Embedded Wafer-Level BGA) for 0.35mm Ball Pitch

Session 6: 10:50 a.m. - Board Level Reliability Study of Fan-Out Single Die Package with 350um Bump Pitch
Cheh Lung Lai, Gu Yan Lin, Tz-Yuan Chao, Yih-Sin Chen, and Feng-Lung Chien – Siliconware Precision Industries Co., Ltd.

Session 7: 11:15 a.m. - System Co-Design of a 600V GaN FET Power Stage with Integrated Driver in a QFN System-in-Package (QFN-SIP)
Jie Chen, Yong Xie, Django Trombley, and Rajen Murugan – Texas Instruments, Inc.

Session 8: 11:40 a.m. - Open CAPI Memory Interface Signal Integrity Study for High-Speed DDR5 and Processes for Micro-TCB (Thin Film Battery) to Enable Miniaturized Healthcare Internet-of-Things (IoT) Devices
<table>
<thead>
<tr>
<th>Session Co-Chairs:</th>
<th>Nimish Bajaj</th>
<th>Akihisa Iwata</th>
<th>T. Susumu</th>
<th>Toshihiro Fukao</th>
<th>Tatsuhiko Hara</th>
<th>Takaaki Uemoto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session</td>
<td>No. 1</td>
<td>No. 2</td>
<td>No. 3</td>
<td>No. 4</td>
<td>No. 5</td>
<td>No. 6</td>
</tr>
<tr>
<td>8:00 a.m.</td>
<td>Development of Flexible Hybrid Electronics Using Reflow Assembly With Stretchable Film</td>
<td>Welfeng Liu, William Uy, Alex Chan, and Dongkai Shangguan – Flex, Ltd.; Andy Behr, Takatoshi Abe, and Fukao Tomohiro – Panasonic Corporation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:25 a.m.</td>
<td>Highly Compact RF Transceiver Module Using High Resistive Silicon Interposer with Embedded Inductors and Heterogeneous Dies Integration</td>
<td>Gabriel Pare, Jean-Philippe Michel, Edoardo Deschaseaux, Pierre Ferris, Ayssar Serhan, and Alexandre Giry – CEA-LETI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:50 a.m.</td>
<td>Process Induced Wafer Warpage Optimization for Multi-Chip Integration on Wafer Level Molded Wafer</td>
<td>Chen-Yu Huang, Daniel Ng, Hung-Ho Lee, Vito Lin, Chang Fu Lin, and C. Key Chung – Siliconware Precision Industries Co., Ltd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:05 a.m.</td>
<td>3D Packaging with Embedded High-Power-Density Passives for Integrated Voltage Regulators</td>
<td>Teng Sun, Robert Spumey, Atom Watanabe, Pulugurtha Mandayakara, Himani Sharma, Rao Tummala, and – Georgia Institute of Technology; Furukawa Yoshinori – NTT Denko Corporation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:35 a.m.</td>
<td>Assessment of Accelerometer Versus LASER for Board Level Vibration Measurements</td>
<td>Varun Thukral, Malee Cahu, Jeroen Zaal, Jeroen Jalink, Romuald Roucou, and Rene Rongen – NXP Semiconductors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:50 a.m.</td>
<td>Effect of Process Parameters on the Long-Run Print Consistency and Material Properties of Additively Printed Electronics</td>
<td>Pradeep Lal, Amrit Abrol, Nakul Kothari, Jeff Suhling, and Susan Ahmed – Auburn University; Ben Leever – US AFRL; Scott Miller – NextFlex Manufacturing Institute</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:20 a.m.</td>
<td>Effect of Process Parameters on the Long-Run Print Consistency and Material Properties of Additively Printed Electronics</td>
<td>Pradeep Lal, Amrit Abrol, Nakul Kothari, Jeff Suhling, and Susan Ahmed – Auburn University; Ben Leever – US AFRL; Scott Miller – NextFlex Manufacturing Institute</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:35 a.m.</td>
<td>Chiplet Microassembly Printer</td>
<td>Brad Rupp, Anne Plochowitz, Sara S. Crawford, Matthew Shreve, Sourabh Raychaudhuri, Sergey Buzlykov, Yunda Wang, Ping Mei, Qian Wang, Jamie Kalb and Yu Wang, Eugene M. Chow and Jing Ping Lu – Palo Alto Research Center Inc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:50 a.m.</td>
<td>A Viscoelastic-Based Fatigue Reliability Model for the Polyimide Dielectric Thin-Film</td>
<td>Yu-Chen Chang and Tz-Cheng Chiu – National Cheng Kung University; Yu-Ting Yang, Yi-Hsu Tseng, and Xi-Hong Chen – Advanced Semiconductor Engineering Group, Inc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:05 a.m.</td>
<td>Comprehensive Investigation on Warpage Management of FBGA With Multi-Embedded Ring Designs</td>
<td>Chang-Chun Lee, Yan-Yu Liou, and Pei-Chen Huang – National Tsing Hua University; Fussen Hsu, Puru Bruce Lin, Cheng-Ta Ko, and Yu-Hua Chen – Unimicron Technology Corporation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Session</td>
<td>Topic</td>
<td>Presenters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. 1:30 p.m.</td>
<td>Development of High Power and High Junction Temperature SiC Based Power Packages</td>
<td>Gonguee Tang, Leong Ching Wai, Teck Guan Lim, Yong Liang Ye, Ravinder Pai Singh, Lin Bu, Boon Long Lau, Tai Chong Chai, Kazunori Yamamoto, and Xiaowu Zhang – Institute of Microelectronics A*STAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. 1:55 p.m.</td>
<td>New Developments of Copper Plating Technology for Embedded Power Chip Packages Challenges</td>
<td>Yung-Da Chiu, Shu-Chih Wang, David Ho, B.H. Ma, Jensen Tsai, and Yu-Po Wang – Silicone Precision Industries Co., Ltd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. 2:20 p.m.</td>
<td>Innovative Flip Chip Package Solutions for Automotive Applications</td>
<td>Tom Tang, Bo-Siang Fang, David Ho, B.H. Ma, Jensen Tsai, and Yu-Po Wang – Silicone Precision Industries Co., Ltd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. 3:30 p.m.</td>
<td>Reliability of Laminated Bond Structure Using (Cu,Ni)/Sn TLP Bonding with AI Interlayer for High-Temperature Power Electronics Packaging</td>
<td>Yangthe Liu, Shalesh Joshi, and Ercan M. Dede – Toyota Research Institute North America</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. 3:55 p.m.</td>
<td>Silver Sintering on Organic Substrates for the Embedding of Power Semiconductor Devices</td>
<td>Alexander Schifflacker, Lorenz Litzenberger, and Juergen Wilde – IMTEK University of Freiburg; Till Huegen and Vladimir Polezhaev – Kempston University of Applied Sciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. 4:45 p.m.</td>
<td>Pb-Free, High Thermal and Electrical Performance Driven Die Attach Material Development for Power Packages</td>
<td>Byong Jin Kim, DongSu Ryu, Hyeong Il Jeon, Weng Tuck Chin, Jinn Young Khim, and Muhammad Hadiham Hazellah – Amkor Technology, Inc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. 4:45 p.m.</td>
<td>- Fan-Out, Flip Chip, and WLCSP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Program Sessions: Friday, May 31, 1:30 p.m. - 5:30 p.m.

<table>
<thead>
<tr>
<th>Session 34: Emerging Materials and Processing</th>
<th>Session 35: New Interconnects for Package Scaling</th>
<th>Session 36: RF and Power Components and Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Committee: Materials & Processing in conjunction with Applied Reliability</td>
<td>Committee: Interconnections</td>
<td>Committee: High-Speed, Wireless & Components</td>
</tr>
<tr>
<td>Nolita 2</td>
<td>Nolita 3</td>
<td>Yaletown 1</td>
</tr>
<tr>
<td>Session Co-Chairs: Ziyin Lin, Intel Corporation Dwayne Shirley Inphi</td>
<td>Session Co-Chairs: David Dunovitch University of Sherbrooke Katsumi Sakuma IBM Corporation</td>
<td>Session Co-Chairs: Yong-Kyu Yoon University of Florida Craig Gau NXF Semiconductor</td>
</tr>
<tr>
<td>1. 1:30 p.m. - Flexible Graphene-Glass Fiber Composite Film With Ultrahigh Thermal Conductivity and Mechanical Strength as Highly Efficient Thermal Interface Materials Xiaoqiang Zhang, Linlin Ren, and Rong Sun – Shenzhen Institutes of Advanced Technology; Jianbin Xu – The Chinese University of Hong Kong; Ching-Ping Wong – Georgia Institute of Technology</td>
<td>1. 1:30 p.m. - Development of 2.3D High Density Organic Package Using Low Temperature Bonding Process With Sn-Bi Solder Shota Miiki, Hiroshi Taneda, Naoki Kobayashi, Kyoshi Oi, Koji Nagai, and Toshinori Koyama – Shinko Electric Industries Co. Ltd.</td>
<td>1. 1:30 p.m. - Multilayer Decoupling Capacitor Using Stacked Layers of BST and LNO Todd Schumann, Sheng-Po Fang, and Yong-Kyu Yoon – University of Florida; Jongmin Yook and Dongsu Kim – Korea Electronics Technology Institute</td>
</tr>
<tr>
<td>2. 1:55 p.m. - Highly Thermal Conductive and Electrically Insulated Graphene Based Thermal Interface Material With Long-Term Reliability Ya Liu and Johan Liu – Chalmers University of Technology; Shujing Chen – Shanghai University; Lilei Ye and Nan Wang – SHT Smart High Tech AB</td>
<td>2. 1:55 p.m. - PowerTherm Attach Process for Power Delivery and Heat Extraction in the Silicon-Interconnect Fabric Using Thermocompression Bonding Pranav Ambhoore, Boris Vaistband, Unmesha Mogera, Ujash Shah, Timothy Fisher, Mark Goosky, and Subramaniam S. Iyer – University of California, Los Angeles</td>
<td>2. 1:55 p.m. - System Co-Design of a High Current (40A) Synchronous Step-Down Converter in an Innovative Multi-chip Module (MCM) in LQFN-Type Packaging Technology Todd Lawson, Jie Chen, and Rajen Murugan – Texas Instruments, Inc.</td>
</tr>
<tr>
<td>4. 3:30 p.m. - Wafer-Level Integration of Thin Silicon Bare Dies Within Flexible Label Jean-Charles Sourrou, Ahmad Ithawi, and Laetitia Castagné – CEA-LETI</td>
<td>4. 3:30 p.m. - Ultra-Wide Micro Bumps Interconnection Matrix for Particle Detection: Process and Assembly Jean Charbonnier, Myrann Assous, Thierry Mourier, Celine Ribière, Stéphane Minoret, Sophie Verrun, Pierre Tissier, Remi Coquand, Mehmet Bicer, Fabienne Allain, Rémi Franziat, Gabriel Paras – CEA-LETI</td>
<td>4. 3:30 p.m. - A Zero Height Small Size Low Cost RF Interconnect Substrate Technology for RF Front Ends for M.2 Modules and Sip Swath V. Vajjakumar, Karthika Nalagaram, Sidharth Dalma, and Posyud Talebneyderkhe – Intel Corporation</td>
</tr>
<tr>
<td>5. 3:55 p.m. - Laser Sintering of Aerosol Jet Printed Conductive Interconnects on Paper Substrates Mohammed Alhendi, Darshana Weerawarne, Jack Lombardi, Rajesh S. Sivasubramony, Peter Borgesen, and Mark Poliks – Binghamton University; Azar Alizadeh – GE Global Research</td>
<td>5. 3:55 p.m. - Low-Temperature Transient Liquid Phase (TLP) Bonding Using Eutectic Sn-In Solder Anisotropic Conductive Films (ACFs) for Flexible Transducers Jae-Hyong Park and Kyung-Wook Pak – Korea Advanced Institute of Science and Technology; Jongchul Park – National NanoFab Center</td>
<td>5. 3:55 p.m. - Open and Closed Loop Inductors for High-Efficiency System-on-Package Integrated Voltage Regulators Claudio Alvarez, Mohamed Bellarejad, and Madhavan Swaminathan – Georgia Institute of Technology</td>
</tr>
<tr>
<td>6. 4:20 p.m. - In-Situ Investigation of Organic Additive Interactions in Copper Electroplating Solutions With Surface Enhanced Raman Spectroscopy (SERS) Nitin Nudimathakady, Bartlet DeProspe, Himani Sharma, Nasrin Hooshmand, Saajal Pankajpannal, and Rao Tummala – Georgia Institute of Technology; Rahul Maneppali and Sashi Kandurud – Intel Corporation</td>
<td>6. 4:20 p.m. - Development of a No Reflow Cu Pillar Bump to Improve Chip/Package Interconnections (CPI) Process and Reliability Performance Kuei Hisao (Frank) Kuo, Yen Neng Wang, Feng Lung Chien, Rick Lee, and Jiunn Jie Wang – Silicone Precision Industries Co., Ltd.</td>
<td>6. 4:20 p.m. - RF Inductors Integrated in Organic Packaging Denis Mercier, Jean-Philippe Michel, Christine Raynaud, and Christophe Billard – CEA-LETI</td>
</tr>
</tbody>
</table>
Wednesday, May 29, 2019

Session 37: Interactive Presentations 1
9:00 AM - 11:00 AM

Room: Belmont Commons

Co-Chairs:
Nam Pham
IBM Corporation

Pavel Roy Paladin
IBM Corporation

1. Comprehensive Solution for Micro Bump Coplanarity Control

2. Structural Enhancement for a CMOS-MEMS Microphone Under Thermal Loading by Taguchi Method
Chun-Lin Lu and Meng-Kao Yeh – National Tsing Hua University

3. A Methodology to Correct In-Fixture Measurement of Impedance by a Machine Learning Model
Bo-Sang Fang, Cha-Chu Lai, Ying-Wei Lu, Kuan-Ta Chen, Mike Tsai, and Don-Son Jiang – Siliconware Precision Industries Co., Ltd.

5. The Microstructure and Mechanical Property of the High Entropy Alloy as a Low Temperature Solder
Yingxia Liu, Xiuchen Zhao, Zhuangzhuang Hou, and JY On – Advanced Semiconductor Engineering Inc.

6. A Versatile Fan-Out Infrastructure Based on Die-Stencil Substrate Promoted by an Advanced Multifunctional Temporary Bonding Material
Xiao Liu, Baron Huang, Hong Zhang, Lisa Kirchner, Arthur Southard, Rama Puligadda, and Tony Faim – Brewer Science, Inc.

7. Low Temperature and Pressureless Microfluidic Electroless Bonding Process for Vertical Interconnections
Han-Tang Hung, S. Yang, I. A. Weng, and C. R. Kao – National Taiwan University; Y. H. Chen – Unimicron Technology Corporation

8. 3D Integration of CMOS-Compatible Surface Electrode Ion Trap and Silicon Photonics for Scalable Quantum Computing
Jing Tao, Yu Dian Lim, Nam Pau Chew, Peng Zhao, and Chuan Seng Tan – Nanyang Technological University; Hong Yu Li, Anak Agung Ali Atriyana, and Lin Bu – Institute of Microelectronics, Agency for Science, Technology and Research A*STAR; Luca Guidoni – University Paris Diderot and Chuan Seng Tan-Nanyang Technological University

9. Integrated RTD Sensors for Maintaining Thermal Uniformity During TCB Process
Salwa Ben Jemaa and Julien Sylvestre – University de Sherbrooke; Pascale Gagnon – IBM Canada, Ltd.

10. Wireless Transfer of Power and Data via a Single Resonant Inductive Link
Lih-Tyng Hwang, Yi-Chen Hsieh, Chin-Wei Chan, I-Fang Lo, Hsiu Suryanono, and Shiang-Hwua Yu – National Sun Yat-Sen University

11. Adaptive Patternning of Optical and Electrical Fan-Out for Photonic Chip Packaging
Ahmed Elmoji, Andres Desmet, Jeroen Missinne, Hannes Ramon, Jons Lambrecht, Johan Bauwelink, and Geert Van Steenberge – Ghent University; Peter De Heyn, Marianne Pantouvaki, and Joris Van Campenhout – IMEC

12. Low Surface Reflectance at Near Infrared Wavelength Thermoplastic Optical Lens Without AR Coating

13. A Novel Design of a Bandwidth Enhanced Dual-Band Impedance Matching Network with Coupled Line Wave Sloping
Deepayan Banerjee and Antra Saxena – Indraprastha Institute of Information Technology, Delhi; Mohammad Hashimi – Nazarbaye University

14. Effects of Electromigration on Microstructural Evolution and Mechanical Properties of Preferential Growth Intermetallic Compound Interconnects for 3D Packaging
Minghui Huang and Lin Zou – Dalian University of Technology

15. Telemetry for Implantable Biosensors
Ryan Green and Erdem Topсалaka – Virginia Commonwealth University

Ayad Ghanaim – 3DS Technologies; Niek van Haare and Sebastjan Kersjes – Besi Nl; Julian Bravin and Elisabeth Brandl – EV Group; Birgit Brandstätter, Hannes Kingler, and Benedikt Auer – Besi AT; Philippe Meunier – NXP Semiconductors

17. Low-Cost Non-TSV Based 3D Packaging Using Glass Panel Embedding (GPE) for Power-Efficient, High-Bandwidth Heterogeneous Integration
Siddharth Ravichandran, Fuhan Liu, Vanessa Smet, Mohanalingam Kathaperumal, and Rao Tummala – Georgia Institute of Technology; Shuhei Yamada – Murata Manufacturing Co., Ltd.

18. Polyhedral Integration of 2.5D and 3D Chiplets Using Interconnect Stitching
Paul Jo, Ting Zheng, and Muhammad Bakir – Georgia Institute of Technology

19. Characterization of the Current Mechanisms and Improved Leakage Current in Silver Doped Barium Strontium Titanate
Todd Schumann, Kyoung Tae Kim, Sheng-Po Fang, and Yong-Kyu Yoon – University of Florida

20. High-Temperature Aging Effects in SAC and SAC-X Lead-Free Solders
Mohammad Alam, KPI Rafidh Hassan, Jeffrey C. Suhling, and Pradeep Lall – Auburn University

Wednesday, May 29, 2019

Session 38: Interactive Presentations 2
2:00 PM - 4:00 PM

Room: Belmont Commons

Co-Chairs:
Patrick Thompson
Texas Instruments, Inc.

Rao Bonda
Amkor Technology

1. Laundering Reliability of Electrically Conductive Fabrics for E-Textile Applications
Jeffrey Lee, Chang-Ho Lo, and Cheng-Chih Chen – Integrated Service Technology; Weifeng Liu – Flex, Ltd.

2. Preconditioning Technologies for Sputtered Seed Layers in FOPLP
Johannes Weichart, Jürgen Weichart, and Andreas Erhart – Evatec Corporation; Kay Vehwege – Fraunhofer IZM, Berlin

3. Impact of Thermal Boundary Resistance on the Thermal Design of GaN-on-Diamond HEMTs
Huaixin Guo, Yuechan Kong, and Tangsheng Chen – Nanojit Electronic Devices Institute

4. Measuring the Electric Properties of Thin Film Shape Memory Polymers in Simulated Physiological Conditions
Daniel Del Nero, Alexandra Joshi-Imre, and Walter Voit – The University of Texas at Dallas

5. Evaluation of WLP Dielectrics for High-Voltage Applications
Markus Woehmann, Marcus Paeck, and Michael Toepfer – Fraunhofer IZM; Klaus-Dieter Lang – TU Berlin

6. Mitigating the Effects of Microvortices in High-Re Deterministic Lateral Displacement by Using Symmetric Airfoil-Shaped Pillars
Jong-Hoon Kim, Kawkab Ahasan, and Brian Dincau – Washington State University

7. Plasma Dry Process Technology Development of Glass-Epoxy Film on the Silicon Substrate to Fabricate RDL for Future GPU/AI Application
Takahide Murayama, Muneyuki Sato, Akiyoshi Suzuki, Atsuhito Itoh, Tetsushi Fujinaga, and Yasuhiro Monkawa – ULVAC, Inc.

8. Fully Solid-State Integrated Capacitors Based on Carbon Nanofibers and Dielectrics with Specific Capacitances Higher than 200 nF/mm²
Amin Saleem, Rickard Andersson, Maria Bylund, Gulhem Pacot, Shafiq Kabir, and Vincent Desmaris – Smoltek AB; Charlotte Goemare – Smoltek AB

Wei-Yuan Cheng, Chen-Tsaì Yang, Shau-Fei Cheng, Wei-Han Chen, Han-Cheng Lai, Tai-Jui Wang, and Yuh-Zheng Lee – Industrial Technology Research Institute (ITRI)

10. Structuring of Laser Activated Polymers for Sensor Applications
Kevin Cromwell, Sebastian Bengsch, Aue, and Marc Wurst – Leibniz University Hanover

Wednesday Refreshment Breaks: 9:15 a.m. - 10:00 a.m. and 2:45 p.m. - 3:30 p.m. in Exhibit Hall - Belmont 1 & 5
1. A Deep Learning Approach for Volterra Kernel Extraction for Time Domain Simulation of Weakly Nonlinear Circuits
Thong Nguyen, Xinping Yang, Xu Chen, and Jose Schutt-Aine – University of Illinois

2. 24G Package Interconnect Study Based on Artificial Neural Network Modeling Approach
Hui Liu, Qian Ding, and Penglin Liu – Intel Corporation

3. Enhanced Reliability of a RF-SIP With Mold Encapsulation and EMI Shielding
Chen-Yuan Lu, Kuo-Hsien Liao, Yu-Chou Tseng, Dao-Long Chen, Alex Chan, Mengkai Shih, Mark Gerber, and Jason Chen – Advanced Semiconductor Engineering Inc.

4. Study of the Effect and Mechanism of a Cop Layer in Controlling the Statistical Variation of Via Extrusion
Golareh Javaljand and Tengfei Jiang – University of Central Florida

Chih-Sung Chen, Nicholas Kao, Poyu Liao, Ssu-Cheng Lai, and Don Son Jiang – SiliconWise Precision Industries Co., Ltd.

6. Three-Dimensional Copper Foam-Filled Elastic Conductive Composites With Simultaneously Enhanced Mechanical, Electrical, Thermal and Electromagnetic Interference (EMI) Shielding Properties
Yugen Hu, Han Gu, Tao Zhao, Tan Li, Pengli Zhu, and Rong Sun – Shenzhen Institutes of Advanced Technology; Cheng-Ping Wong – Georgia Institute of Technology

7. Vertical Interconnect Technology for Enlarging Capacity on Micro Solid Thin Film Rechargeable Battery
Akihiro Horibe, Keniake Sueoka, Risa Miyazawa, Takahiro Mori, and Hiroyuki Mori – IBM Corporation

8. Characterization of Fine Pitch Hybrid Bonding Pads Using Electrical Mislallocation Test Vehicles
Imed Jadi, Diederick Lattard, Pascal Vivet, Edith Beigné, and Lucile Arnaud – CEA-LETI; Alexis Farcy, Joris Imed Jani, Didier Lattard, Pascal Vivet, Edith Beigné, and Lucile Arnaud – CEA-LETI; Alexis Farcy, Joris Jani, Didier Lattard, Pascal Vivet, Edith Beigné, and Lucile Arnaud – CEA-LETI

9. Characterization of Coated Silver Wire Mold Encapsulation and EMI Shielding
Masatoshi Tsunoda and Toshiaki Michihiro – Kyocera

10. Characterization of Coated Silver Wire Bond Interface Using TEM
Murali Sarangapani, Eric Tan Swee Seng, and Jason Wong Chin Yeung – Heraeus Holding GmbH

11. Characterization of Coated Silver Wire Bond Interface Using TEM
Murali Sarangapani, Eric Tan Swee Seng, and Jason Wong Chin Yeung – Heraeus Holding GmbH

Lianyuan Liu, Tao Lu, Daqun Luo, and Hui Xiao – China Electronic Product Reliability and Environmental Testing Research Institute

Gunvinder Singh Khinda, Maan Z. Kokaah, Mohanned Alhendi, M. Y. Nadler, Jack P. Lombardi, Danhara L. Weerawarne, Mark D. Polkis, and Peter Borgesen – Binghamton University; Nancy C. Stoffel – GE Global Research

14. Effects of Oven and Laser Sintering Parameters on the Electrical Resistance of IJP Nano-Silver Traces on Mesoporous PET Before and During Fatigue Cycling
Gunvinder Singh Khinda, Maan Z. Kokaah, Mohanned Alhendi, M. Y. Nadler, Jack P. Lombardi, Danhara L. Weerawarne, Mark D. Polkis, and Peter Borgesen – Binghamton University; Nancy C. Stoffel – GE Global Research

15. Multilayer Glass Substrate With High-Density Via Structure for All Inorganic Multi-Chip Module
Toshiki Iwai, Taiji Sakai, Daiseuke Muztani, and Seiki Saksyama – Fujitsu Laboratories, Ltd.; Kenji lida, Takayuki Inaba, Hidehiko Fujisaki, Akira Tamura, and Yosihon Miyazawa – Fujitsu Interconnect Technologies Limited

16. Three-Poisson’s Ratio of Lead-Free Solder – The Often Forgotten but Important Material Property
KPI Rafidah Hassan, Mohammad Alam, Jeffrey C. Suhling, and Pradepend Lai – Auburn University

17. Modeling and Design of Power Accelerator Laboratory
Christopher Kenney and Julie Segal – SLAC National Accelerator Laboratory

18. 24G Package Interconnect Study Based on Artificial Neural Network Modeling Approach
Hui Liu, Qian Ding, and Penglin Liu – Intel Corporation

19. Dynamic Characteristics Evaluation on Test Vehicles
Tatsuo Nagamatsu, and Junichi Kaneko – Dexerials Ltd.; Hidekazu Yagi, Ryoji Kojima, Daichi Mori, Chenhsiu, Toru Maeda, and Doug Day – Shinkawa

20. Study of Electrical and Mechanical Interference (EMI) Shielding Properties
Yugen Hu, Han Gu, Tao Zhao, Tan Li, Pengli Zhu, and Rong Sun – Shenzhen Institutes of Advanced Technology; Cheng-Ping Wong – Georgia Institute of Technology

21. Study of the Effect and Mechanism of a Cop Layer in Controlling the Statistical Variation of Via Extrusion
Golareh Javaljand and Tengfei Jiang – University of Central Florida

Oscar Chuang, Chang-Chun Lee, and Chia-Ping Hsieh – National Tsing Hua University; Wei-Yuan Cheng and Steve Chiu – Industrial Technology Research Institute

23. The Poisson’s Ratio of Lead-Free Solder – The Often Forgotten but Important Material Property
KPI Rafidah Hassan, Mohammad Alam, Jeffrey C. Suhling, and Pradepend Lai – Auburn University

24. Additive Metal Deposition onto Silicon for Enhanced Microelectronics Cooling
Arad Aziz, Matthias Daeumer, Jacob C. Simmons, Bahgat G. Sammakia, Bruce T. Murray, and Scott Schiffrin – Binghamton University

Jinho Hah, Michael Suliks, Chao Ren, Kyung-Sk (Jack) Moon, Samuel Graham, and C. P. Wong – Georgia Institute of Technology

Thursday, May 30, 2019
Session 39: Interactive Presentations 3 9:00 AM - 11:00 AM

Committee: Interactive Presentations Room: Belmont Commons
Session Co-Chairs:
Michael Mayer
University of Waterloo

Alan Huffman
Micross Advanced Interconnect Technology

1. Modeling and Design of Power Distribution Network for a Heterogeneous Integrated Active Interposer With Neuromorphic Computing Circuits
Min Miao, Tianfang Chen, Jincan Zhang, Na Li, Kunkun Li, and Liyuan Wang – Beijing Information Science and Technology University; Yangqing Chen – IBM Corporation

2. PCB Microstrip Line Far-End Crosstalk Mitigation by Surface Mount Capacitors
Zhaqing Chen – IBM Corporation

3. New Cost-Effective Via-Last Approach on Artificial Neural Network Modeling Approach
Huan Liu – Peking University; Yang Yang, Xiaole Cui, Li, and Liyuan Wang – Beijing Information Science and Technology University; Yang Yang, Xiaole Cui, Li, and Liyuan Wang – Beijing Information Science and Technology University

4. Electromigration-Induced Sn Grain Rotation in Lead-Free Flip Chip Solder Bumps
Mingliang Huang, Jiameng Kuang, and Hongyu Sun – Dalan University of Technology

5. Low-Cost MT-Ferrule-Compatible Optical Connector for Co-Packaged Optics Using Single-Mode Polymer Waveguide
Akihiro Noriki and Takeru Amano – National Institute of Advanced Industrial Science and Technology; Masatoshi Tsunoda and Toshiaki Michihiro – Kyocera Corporation

6. Characterization of Coated Silver Wire Bond Interface Using TEM
Murali Sarangapani, Eric Tan Swee Seng, and Jason Wong Chin Yeung – Heraeus Holding GmbH

7. Research on Applied Reliability of BGA Solder Balls in Extreme Marine Environment
Lianyuan Liu, Tao Lu, Daqun Luo, and Hui Xiao – China Electronic Product Reliability and Environmental Testing Research Institute

8. Influence of Single/Double Sweeping Modes and Sweeping Voltage Increment/Polarity on Measurement of TSV Leakage Current
Qinghua Zeng, Jing Chen, and Yufeng Jin – Peking University

9. Improving the Solder Wettability via Atmospheric Plasma Technology
Sagun Kang, Yee-Wen Yen, and Yu-Lin Kuo – National Taiwan University of Science and Technology; Wallace Chuang and Eckart Schellkes – Robert Bosch Taiwan Co., Ltd.

10. Simulation and Experimental Validations of EM/TM/SM Physical Reliability for Interconnects Utilized in Stretchable and Foldable Electronics
Oscar Chuang, Chang-Chun Lee, and Chia-Ping Hsieh – National Tsing Hua University; Wei-Yuan Cheng and Steve Chiu – Industrial Technology Research Institute

11. A Deep Learning Approach for Volterra Kernel Extraction for Time Domain Simulation of Weakly Nonlinear Circuits
Thong Nguyen, Xinping Yang, Xu Chen, and Jose Schutt-Aine – University of Illinois

Lianyuan Liu, Tao Lu, Daqun Luo, and Hui Xiao – China Electronic Product Reliability and Environmental Testing Research Institute

13. Influence of Single/Double Sweeping Modes and Sweeping Voltage Increment/Polarity on Measurement of TSV Leakage Current
Qinghua Zeng, Jing Chen, and Yufeng Jin – Peking University

14. Improving the Solder Wettability via Atmospheric Plasma Technology
Sagun Kang, Yee-Wen Yen, and Yu-Lin Kuo – National Taiwan University of Science and Technology; Wallace Chuang and Eckart Schellkes – Robert Bosch Taiwan Co., Ltd.

15. Orthogonal Quilt Packaging 3D Integration for High Energy Particle Detectors
Jason Kulick, Tian Lu, Carlos Ortega, Gary Bernstein, and Edit Varga – Indiana Integrated Circuits, LLC; Christopher Kenney and Julie Segal – SLAC National Accelerator Laboratory

Thursday Refreshment Breaks: 9:15 a.m. - 10:00 a.m. and 2:45 p.m. - 3:30 p.m. in Exhibit Hall - Belmont 1 & 5
16. Carbonized Electrodes for Electrochemical Sensing
Mohammad Aminul Haque and Nicole McFarlane – The University of Tennessee, Knoxville; Nickolay V. Lavinik and Dale Hensley – Oak Ridge National Laboratory

17. Moldability Challenges Associated With the Assembly of Thicker IC Packages for High Voltage and Power Applications
Sadia Naseem, Jack Chang, Megan Chang, Bob Lee, and Jason Chien – Texas Instruments, Inc.

18. Highly Compact, Multiband Composite-Right-Handed (CRLH) Transmission Line Based Stub for GPS Applications
Hae-In Kim, Seheee Hwangbo, Renuka Bowrothu, and Yong-Kyu Yoon – University of Florida

Thursday, May 30, 2019
Session 40: Interactive Presentations 4
2:00 PM - 4:00 PM
Committee: Interactive Presentations
Room: Belmont Commons
Session Co-Chairs:
Mark Eblen
Kyoercer International SC
Jeffrey Lee
IST-Integrated Service Technology Inc.

1. Die Thickness Optimization for Preventing Electro-Thermal Fails Induced by Solder Voids in Power Devices
Dario Visello, Andrea Albernetti, and Marco Rovitto – STMicroelectronics

2. 3-T (8-7) Decoupling Capacitors for Improved PDN in LPDDR4/4X3 System
Sunil Gupta – Qualcomm Technologies, Inc.

3. Improved Correlation Between Accelerated Board Level Reliability (BLR) Testing and Customer BLR Results Using a Hybrid Closed-Form/Finite Element Methodology
Maxim Serebrenik, Natalie Hernandez, Gil Sharon, Nathan Blattau, and Craig Hillman – DFR Solutions; Ken Symonds – Western Digital Corporation

4. Fabrication and Reliability Demonstration of 3 µm Diameter Photo Vias at 15 µm Pitch in Thin Photosensitive Dielectric Dry Film for 2.5 D Glass Interposer Applications

5. Pre-Cure Modification of Electrically Conductive Adhesive for Low Temperature Interconnection
Jintao George and David Danovitch – University of California, Los Angeles

6. RDL-1st Fan-Out Panel Level Packaging (FOPLP) for Heterogeneous and Economical Packaging

7. Epoxy Composites with Surface Modified Silicon Carbide Filler for High-Temperature Molding Compounds
Fan Wu, Nicholas C Mitchell, Bo Song, Kyongsik Moon, and C.P. Wong – Georgia Institute of Technology

8. Ultra Low Resistivity and High Electrical Stability SiIoy-2 ECAs Produced from Curing Chemistry Optimization for Flexible Electronics
Xueqiao Wang, Kyongsik Moon, Bo Song, and C.P. Wong – Georgia Institute of Technology

9. Physics of Failure Based Simulation and Experimental Testing of Quad Flat No-Lead Package
Jia-Shen Lan and Mei-Ling Wu – National Sun Yat-Sen University

10. An Assessment of Electromigration in 2.5D Packaging
Jiefeng Xu, Huayuan Wang, Jing Wang, VanLai Pham, Stephen R. Cain, and S.B. Park – Binghamton University; Scott McCann and Gamal Refai-Ahmed – Xinlin, Inc.

11. Diffusion Enhanced Drive Sub 100 °C Wafer Level Fine-Pitch Cu-Cu Thermocompression Bonding for 3D IC Integration
Asiya Kumar Panigrahy, Satish Bonam, Tamal Ghosh, Sva Rama Krishna Vanjari, and Shiv Govind Singh – Indian Institute of Technology, Hyderabad

12. Development of Sheet Type Molding Compounds for Panel-Level Package
Kenichi Ueno, Kazuhiro Dohi, Yui Suzuki, Masakazu Hirose, and Akira Nakao – Sanyu Rec Co., Ltd.

Huan Liu, Runu Feng, Yufeng Jin, and Yang Yang – Peking University; Min Miao – Beijing Information Science & Technology University

Rahil Khazaka, Donatien Martineau, Tony Youssef, Thanh Long Le, and Stephane Azzopardi – Safran R&D

15. Server CPU Package Design Using PoINT Architecture

16. Highly Reliable Die Attach Silver Joint with Pressure-Less Sintering Process
Shai Chen, Christine LaBarbera, and Ning-Cheng Lee – Indium Corporation; William Shambach and Jordan Palmer – Rochester Institute of Technology; Xuanyi Ding – Cornell University

17. 3D Power Packaged Device Thermomechanical Modeling and Stress Analysis after Reliability Trials
Lucrezia Guarino – STMicroelectronics; Lucia Zullino, Fumihiro Inoue, Patrick Verdonck, Soon-Wook Kim, Erik Steedk, Andy Miller, Gerald Beyer, and Eric Beyne – IMEC

18. Direct Bonding of Low-Temperature Heterogeneous Dielectrics
Serena Iacovo, Lan Peng, Alain Phommahaaxay, Fumihiro Inoue, Patrick Verdonck, Soon-Wook Kim, Erik Steedk, Andy Miller, Gerald Beyer, and Eric Beyne – IMEC

19. Millimeter Wave Dual Polarization Design Using Frequency Selective Surface (FSS) for 5G Base-Station Applications
Li-Ting Hwang, Chung-Yi Hsu, and Chi-Hau Yang – National Sun Yat-Sen University

Friday, May 31, 2019
Session 41: Student Interactive Presentations
8:30 AM - 10:30 AM
Room: Belmont Commons
Session Co-Chairs:
Kristina Young-Fisher
GLOBALFOUNDRIES
Ibrahim Guven
Virginia Commonwealth University

1. Room-Temperature Wire Bonding with Pd Coated Cu Wire on Al Pods: Ball Bond Optimization with 2-Stage Methodology
Nicholas Kam, Michael Hook, and Michael Meyer – University of Waterloo; Celal Con and Karim Karm – KA Imaging Inc.

2. On-Chip ESD Monitor
Kannan Kalappurakkal Thakkanp, Boris Vaibasd, and Subramanian S. Iyer – University of California, Los Angeles

3. Preparation and Characterization of Electroplated Cu/Graphene Composite
Xin Wang, Qian Wang, Jian Cai, Changming Song, and Yang Hu – Tsinghua University; Yang Zhao and Yu Pei – University of Science and Technology of China

4. Quantifying the Impact of RF Probing Variability on TRL Calibration for LTCC Substrates
Omer Faruk Yildiz, David Dahl, and Christian Schuster – Hamburg University of Technology

5. Effects of NCF and UBMs Materials on Electromigration Reliabilities of Sn-Ag Microbumps for Advanced 3D Packaging
Kirir Son, Gahui Kim, Hydongs Ryu, YoungCheon Kim, Jeong Sam Han, and Young-Bae Park – Andong National University; Gyu-Tae Park – Amkor Technology, Inc.; Ho-Young Son and Nam-Seong Kim – SK hynix Inc.; Cheol Wooong Yang – Sungkyunkwan University

6. Ag Diffusion Control Through Sn on a Sequential Plating-Based Bumping Process
Abderrahim El Amrani, Etienne Paradis, David Danovitch, and Dominique Drouin – Université de Sherbrooke

7. Mechanical Reliability Assessment of Cu65Sn35 Intermetallic Compound and Multilayer Structures in Cu/Sn Interconnects for 3D IC Applications
Jui-Yang Wu and C. Robert Kao – National Taiwan University; Jenn-Ming Yang – University of California, Los Angeles

Da-Jin Yoon and Kyung-Wook Paik – Korea Advanced Institute of Science and Technology
Ji-Hye Kim, Dal-Jin Yoon, and Kyung-Wook Paik – Korea Advanced Institute of Science and Technology

10. Effects of the Curing Properties and Viscosities of Non-Conductive Films (NCFs) on Sn-Ag Flip Chip Solder Bump Joint Morphology and Reliability
HanMin Lee, SeYong Lee, SangMyung Shin, and Kyung-Wook Paik – Korea Advanced Institute of Science and Technology; Taejin Choi and SooIn Park – Doosan Corporation Electro-Materials BG

11. Experimental Investigations on Vertical Ultrasonic Assisted Low Temperature Sintering Process
Henning Seefisch and Jens Twiefel – Leibniz University Hanover

12. Pressureless Transient Liquid Phase Sintering Bonding of Sn-58Bi with Ni Particles for High-Temperature Packaging Applications
Kyung Deuk Min, Kwang-Ho Jung, Choong-Jae Lee, and Seung-Boo Jung – Sungkyunkwan University

13. Epoxy/Triazine Copolymer Resin System for High Temperature Encapsulant Applications
Jiaxiong Li, Chao Ren, Kyoung-Sik Moon, and CP Wong – Georgia Institute of Technology

14. Low-Temperature Ag-Ag Direct Bonding Technology for Advanced Chip-Package Interconnection
Jiaqi Wu and Chin C. Lee – University of California, Irvine

15. Reliability of Micro-Alloyed SnAgCu Based Solder Interconnections for Various Harsh Applications
Sihan Su, Francy Akkara, Anto Raj, Seth Gordon, Sharath Sridhar, Sivasubramanian Thirugnanasambandam, Sa’d Hamasha, Jeffery Suhling, and John Evans – Auburn University; Cong Zhao – Apple Inc.

16. A Novel Approach of Copper-Ceramic-Joints Manufactured by Selective Laser Melting
Thomas Stoll and Matthias Kirstein – Institute for Factory Automation and Production Systems; Joerg Franke

17. Automatic Transient Thermal Impedance Tester for Quality Inspection of Soldered and Sintered Power Electronic Devices on Panel and Tile Level

18. Time 0 Void Evolution and Effect on Electromigration
Jiefeng Xu, Van Lai Pham, Huayan Wang, Stephen R. Cain, and S.B. Park – Binghamton University; Scott McCann, Ho Hyung Lee, and Gamal Refai-Ahmed – Xilinx, Inc.

19. Quintuple Band lambda/4 Stub by Using Unbalanced Bridged CRLH Transmission Lines
Renuka Bowrothu, Sehee Hwangbo, Yong-Kyu Yoon, and Hein Kim – University of Florida

20. Product Level Design Optimization for 2.5D Package Pad Cratering Reliability during Drop Impact
Huayan Wang, Jing Wang, Jiefeng Xu, Vanlai Pham, Ke Pan, and Seungbae Park – Binghamton University; Hohyung Lee and Gamal Refai-Ahmed – Xilinx, Inc.

Jinho Hah, Yongja Kim, Patxi Fernandez-Zelaia, Sangil Lee, Shreyes Melkote, Kyoung-Sik Moon, and Ching-Ping Wong – Georgia Institute of Technology; Leroy Christie – ASM Pacific Assembly Products, Inc.; Paul Houston – Engent Inc.

22. Reduction of Ag Corrosion Rate During Decapsulation of Ag Wire Bond Packages
Jinho Hah, Kyoung Sik (Jack) Moon, and C. P. Wong – Georgia Institute of Technology; Yong Ja Kim – Samsung Electronics Company, Ltd.

Interactive Presentations: Friday, May 31, 8:30 a.m. - 10:30 a.m.

Friday Refreshment Break: 9:15 a.m. - 10:00 a.m. in Mont-Royal Commons
2019 TECHNOLOGY CORNER EXHIBITS AND INTERACTIVE PRESENTATIONS

Technology Corner Exhibits
Wednesday, May 29
9:00 a.m. - 12:00 Noon / 1:30 p.m. - 6:30 p.m.
Thursday, May 30
9:00 a.m. - 12:00 Noon / 1:30 p.m. - 4:00 p.m.
Belmont 1 & 5

Interactive Presentation Sessions
Wednesday, May 29
Session 37: 9:00 a.m. - 11:00 a.m. / Session 38: 2:00 p.m. - 4:00 p.m.
Thursday, May 30
Session 39: 9:00 a.m. - 11:00 a.m. / Session 40: 2:00 p.m. - 4:00 p.m.
Friday, May 31
Session 41: 8:30 a.m. - 10:30 a.m.
Belmont Commons
Booth 323
3D Systems Packaging Research Center (PRC)
Georgia Institute of Technology
813 Fertst Drive, NW
Atlanta, GA 30332-0560
Phone: +1-404-894-9097
Fax: +1-404-894-3842
www.prc.gatech.edu
Email: gptrc@prc.gatech.edu
The 3D Systems Packaging Research Center (PRC) at the Georgia Institute of Technology is a Center dedicated to leading-edge research, education of highly-interdisciplinary students and global industry collaborations in the System-on-a-Package (SOP) vision to enable highly miniaturized, mega-functional systems in a single package. The PRC’s research encompasses advanced 3D systems packaging technologies including: electrical, mechanical and thermal design; ultra-thin and ultra-high-density glass interposers and packages; ultrafine pitch chip-level and board-level interconnections; passive and active components and integration into power, RF, photonic and analog modules. The PRC model for industry collaboration is enabled by a world-class team of cross-disciplinary academic and research faculty, students, visiting industry engineers, and supply-chain manufacturers. The current industry consortium at PRC consists of the most comprehensive industry ecosystem of material and tool suppliers, substrate and assembly manufacturers, and end users in a wide variety of consumer and high-performance applications including high performance cloud computing and networking.

Booth 512
Advance Reproductions Corp
100 Flagship Dr.
North Andover, MA 01845
Phone: +1-978-685-2911
Fax: +1-978-685-1771
www.advancerepro.com
Sales@advancerepro.com
Advance Reproductions Corporation is a leading supplier of Large-Area and Optical Photomasks and Phototools. Innovative by nature, Advance works closely with customers to find solutions for all of their imaging requirements. Whether it be complex lithography patterning for prototype R&D or high volume mask manufacturing, our expert staff sets itself apart by providing a creative approach to each and every request.

Booth 319
AGC
4375 NW 235th Avenue
Hillsboro, OR 97124
Phone: +1-714-745.3193
Fax: +1-503-844-9308
www.agcem.com
Contact: Vern Stygar
Email: vstygar@agcem.com
AGC is a leader of glass, quartz, and chemical products for Life Science, multi-frequency electronics, automotive and photonic for advance packaging applications. AGC advance glass manufacturing allows quick turn specialized formulations of alkali-free aluminoborosilicate glass with a wide range of CTE’s suitable for LED, MEMS, glass interposer, FOWLP, WLDP and other specialized packaging substrates. AGC’s high volume capability for glass and value-added services such as vias drilling, AR coatings, and via fill technologies makes AGC a valuable partner for your next generation mobile, IoT or Life Science product. AGC’s premier synthetic quartz with extraordinary low insertion loss and nearly zero autofluorescences makes this material idea for mm wave applications and photonic detection systems. When combined with specialized metallized vias, AGC’s synthetic quartz, enables the engineer to design revolutionary designs in high frequency applications. In addition AGC’s synthetic quartz low auto fluorescence makes this AGC’s AQ an excellent substrate for photonic applications in Lab on a Chip reactors. AGC’s fluorinated polymer is ideally suited for dielectric coatings, or creating micro or nano-sized vias for Lab on a Chip applications in the Life Science technologies sector: AGC’s fluorinated polymer is highly transparent down to 250 nanometers. GLASS IS ONLY THE BEGINNING

Booth 309
AI Technology Inc.
70 Washington Rd.
Princeton Junction, NJ 08550
Phone: +1-609-799-9388
Fax: +1-609-799-9308
www.alitechnology.com
Contact: Maurice LeBlon
Email: mleblon@alitechnology.com
For over 30 years, AI Technology, Inc. (AIT) has provided adhesive pastes and film products, available as electrically conductive or non-electrically conductive for ultimate reliability. AIT’s adhesives are critical to commercial and industrial semiconductor, electronic and microelectronic applications. Our diverse product line includes molecularly flexible epoxy adhesives for die and substrate attach and bonding; adhesives and underfills for multi size die bonding; AIT’s Thermal Interface Materials product line offers unparalleled thermal management. AIT manufactures TIM in numerous form factors, such as greases, gels, and variously sized dry or tacky pads. DAF for stack-chip packaging with high temperature capabilities past 230°C. AIT’s non-adhesive products include conformal coatings for ultimate moisture and/or humidity protection. AIT’s Wafer Processing Adhesive (WPA) is a temporary film format, high temperature bonding adhesive for thin wafer processing of bonding device wafer to carrier wafer.

Booth 306
Akrometrix, LLC
2700 NE Expressway
Building B, Suite 500
Atlanta, GA 30345
Phone: +1-404-486-0880 Ext. 21
Fax: +1-404-486-0890
www.akrometrix.com
Contact: Mark Venco
Email: sales@akrometrix.com
Akrometrix manufactures, sells, and services worldwide: Thermal warpage metrology systems -50°C to 300°C; Thermal strain metrology systems 25°C to 300°C; Low cost room temperature warpage metrology systems; Unique software solutions and reports to enable effective use of warpage/strain data; Test services for thermal warpage and strain metrology.

Booth 316
Alpha Novatech, Inc.
473 Sapena Ct. #12
Santa Clara, CA 95054
Phone: +1-408-567-8082
Fax: +1-408-567-8053
www.alphanovatech.com
Contact: Glenn Summerfield
Email: sales@alphanovatech.com
Alpha Novatech, Inc. is your partner for Thermal Solutions. We offer a wide variety of standard heat sinks and accessories. Our product line includes natural convection, forced convection, and active heat sinks. We also offer various attachment methods and hardware for almost any application. In addition, we can offer free heat sink thermal simulations, standard or custom heat sinks in prototype to production quantities, quick and easy customization without NRE fees, while featuring short lead times. Standard parts are carried in stock. Lead times for custom parts of 1–2 weeks are possible for initial quantities.

Booth 305
Amkor Technology, Inc.
2045 E. Innovation Circle
Tempe, AZ 85284
Phone: +1-480-821-5000
www.amkor.com
Email: sales@amkor.com
Amkor Technology, Inc. is one of the world’s largest providers of outsourced semiconductor packaging and test services. Founded in 1968, Amkor pioneered the outsourcing of IC packaging and test, and is now a strategic manufacturing partner for more than 250 of the world’s leading semiconductor companies, foundries and electronics OEMs. Amkor’s operating base includes more than 10M ft² of
floor space, with production facilities, product development centers, and sales and support offices located in key electronics manufacturing regions in Asia, Europe and the U.S.

Booth 120
Asahi Kasei Corporation
1-1-2 Yurakucho, Chiyoda-ku, Tokyo, 100-0006 Japan
Phone: +81-3-6699-3991
www.asahi-kasei.co.jp/asahi/en/
Contact: Reiko Mishima
Email: mishima.rb@om.asahi-kasei.co.jp
Asahi Kasei is a leading chemical company developing and supplying high performance materials to electronics industry for years. Our PIMEL™ are photosensitive polyimide, PBO and new polymer base material for semiconductor buffer coatings, insulation layer for redistribution layers (RDL) in semiconductor packaging. PIMEL™ has been widely used in many IC fabs / OSATs with proven track records in most of semiconductor companies. Based on our technology expertise and experiences in the field, our low temperature cure polyimides have rapidly increased its applications for Wafer Level Fan-Out (WLFO), and other advanced packages for mobile, automotive, server and other emerging technologies. Asahi Kasei continues to develop new materials to meet future technologies by communicating with advanced market and our valued customers.

Booths 124, 126
ASE Group
1255 E. Arques Ave.
Sunnyvale, CA 94085
Phone: +1-408-636-9500
Fax: +1-408-636-9485
www.aseglobal.com
Contact: Patricia MacLeod
Email: patricia.macleod@aseus.com
With the rise of Heterogeneous Integration as a key technology enabler, ASE is innovating for new achievement in performance, power, footprint, and much more. Alongside our broad portfolio of long-established technologies, ASE is delivering innovative advanced packaging, System-in-Package and MEMS solutions to meet growth momentum across end markets such as AI, HPC, 5G, automotive, IoT, and mobile. As such, collaboration within our expanding ecosystem is more important than ever, so please drop for a chat by our booth @ the 2019 IEEE ECTC. We’re here to discuss our advances in Wire Bond, System-in-Package, Wafer Level Packaging, Fan Out, Flip Chip, MEMS & Sensors, and 2.5D & 3D technologies, all ultimately geared towards applications to improve human lifestyle and global efficiency. Please follow our ECTC activities on Twitter: @asegroup_global

Booth 221
ASM Pacific Technology
7850 South Hardy Drive, Suite 110
Tempe, AZ 85284
Phone: +1-602-437-4892
Cell: +1-480-560-0020
www.asmpacific.com
Contact: Terence DeCoteau
Email: Terence.decoteau@asmpacific.com
ASM Pacific Technology is the World Leader in Advanced Packaging Equipment Solutions, SMT Equipment, and Lead frame Materials. With a vision of providing customer focused cost effective solutions, we offer IC Assembly, Opto-electronic, Electronic Manufacturing, Physical Vapor Deposition / Chemical Vapor Deposition Equipment and Lead frame technology that is in the forefront of the Semiconductor Equipment Industry. ASMPT is the only IC Assembly Equipment provider recognized as one of 2018 Thomson Reuters Top 100 Global Technology Leaders.

Booth 308
Atotech Group
Erasmussstr.20
Berlin, Germany 10553
Phone: +49-30-34985-0
Contact: Daniel Schmidt
Email: Daniel.schmidt@atotech.com
Atotech Group - A leading surface finishing solutions provider, delivering chemistry, equipment, and unparalleled on-site customer service making us a valuable partner for the many industries we serve. We develop, produce and sell plating chemicals and equipment for manufacturing printed circuit boards, package substrates, semiconductors, leadframes and connectors and are recognized as the leading innovator within the electronics plating industry. The trends towards better connectivity, greater device functionality, performance, and miniaturization, are leading to a higher complexity of our customers products, which require advanced technology solutions more than ever. Today, we are serving global manufacturers with leading horizontal equipment and wet chemical process technology in the areas of surface treatment, metallization, electrolytic plating, final finishes, as well as pad metallization, copper pillar, RDL, TSV, and dual damascene plating. Our comprehensive portfolio, consisting of horizontal and vertical processes, allows us to participate in various future growth areas, such as next generation smartphones, electrical and autonomous vehicles, internet of things, 5G, virtual reality and artificial intelligence.

Booth 109
Binghamton University
Small Scale Systems Integration and Packaging (S3IP) Center
P.O. Box 6000
Binghamton, NY 13902-6000
Phone: +1-607-777-7270
Contact: Steve Czarnecki
Email: czar@binghamton.edu
The S3IP is a research and development organization that addresses research challenges in electronics packaging system design, process development, prototyping, and manufacturing for academia and the microelectronics industry. Located at Binghamton University, the Center brings together partners from government, industry and academia, providing opportunities for collaborations that will advance microelectronics research and development, with particular focus on electronics packaging design and manufacturing technology; thermal analysis and management for electronics; characterization of materials, surfaces, and physical interfaces for electronics devices and assemblies; and failure analysis and reliability improvement for electronics. Subject areas addressed include packaging of microelectronics, 2.5D/3D chip assemblies, power electronics, and integrated photonics.

Booth 311
Cadence Design Systems, Inc.
2655 Seely Ave.
San Jose, CA 95134
Phone: +1-408-943-1234
Fax: +1-408-758-6610
www.cadence.com
Cadence enables global electronic design innovation and plays an essential role in the creation of today’s integrated circuits, packages, and PCBs. Cadence® IC packaging and cross-domain co-design automation provide efficient solutions in system-level co-design and advanced mixed-signal packaging, delivering the automation and accuracy to expedite the design process. Cadence also offers an integrated system design solution for TSMC’s advanced wafer-level Integrated Fan-Out (iInFO) packaging technology. The solution includes implementation, signoff, and electro-thermal analysis tools that enable concurrent multi-chip optimization for designs incorporating InFO technology. With complex advanced packages, designers are faced with power integrity (PI) and signal integrity (SI) issues driven by increasing IC speeds and data transmission rates combined with decreases in power-supply voltages and denser, smaller geometries. Stacked die and packages, higher pin counts, and greater electrical performance constraints are making the physical design of semiconductor packages more complex. To address these issues, Cadence provides advanced PI and power-aware SI Sigtry™ tools that can be used throughout the design process.
 Booth 222
Camtek USA Inc.
48389 Fremont Blvd., Ste. 112
Fremont, CA 94538
Phone: +1-510-624-9905
Fax: +1-408-987-9484
www.camtek.com
Contact: Tommy Weiss
Email: tweiss@camtek.com
Camtek provides a comprehensive, all-in-one inspection and metrology equipment along with software solutions serving the Advanced Packaging, Memory, CMOS Image Sensors, MEMS, RF and other segments in the compound semiconductors industry. We provide automated solutions and crucial yield-enhancement data for enhancing production processes. Camtek has introduced a complete AOI solution for Front End-EPI substrates and complete Backend-Line inspection, utilizing an In-Line process. We have a patented solution for Surface Topography Sensor (STS™), and include Wafer BOW metrology, Post Dicing, and Reconstructed wafers, identifying crucial defects at high throughput rate. Our innovations have made Camtek one of the technological leaders in the field of inspection and metrology in this industry. By developing core competencies and solutions, Camtek is the industry standard for many applications. Our winning combination of performance and flexibility with ease of operation and reliability delivers to customers the optimal capital investment.

 Booth 122
Canon USA
3300 North 1st St.
San Jose, CA 95134
Phone: +1-408-468-2000
www.usa.canon.com/industrial
Contact: Doug Shelton
Email: sshelton@cusa.canon.com
Canon USA Industrial Products Division provides advanced wafer & panel process equipment for applications including semiconductor, advanced packaging, power device & display. Canon provides cost-effective processing solutions including l-line & KrF optical lithography, nanoimprint lithography & Canon ANELVA deposition & etch equipment. Canon products supporting Compound Semiconductor applications include FPA-30305+ & FPA-3030EX6 lithography systems & BC7000 permanent wafer bonding systems.

 Booth 215
CEA LETI
17 Rue des Martyrs
38054 Grenoble Cedex 9, France
Phone: +33633661323
www.leti.fr/en
Contact: Severine Cheramy
Email: severine.cheramy@cea.fr
CEA-LETI is an institute providing R&D and Prototyping services in the field of Micro and Nanotechnologies. Capabilities include 8" and 12" wafer process flows for advanced CMOS, 3D stacking, MEMS and Silicon Photonics. Based in Grenoble, France, CEA-LETI has offices in the US and Japan. Over the past ten years CEA-LETI has developed a wide range of expertise in the fields of silicon interposers and high density interconnects to address the needs of the semiconductor industry in market segments such as mobile telephones and low power computing. Leti is working on hybrid bonding, wafer-to-wafer or chip-to-wafer integration. Pitch of few microns is envisioned, without underfill, room temperature and ambient pressure bonding. Self-alignment using capillary force is also developed for high precision, high throughput chip-to-wafer bonding. With the support of its internal IC design teams LETI provides industrial partners with a unique environment for validating new concepts through models, new design tools, test vehicles and implementing fully functional demonstrators such as wide I/O memory standard, 60 GHz RF SOCs for video data transfer or photonic interposers. Recently CEA-LETI has developed CoolCube, an original technique for stacking transistors sequentially in the same process flow for 3D-VLSI. The technology is designed to allow a connection of the stacked active layers on a nanometric scale, with a very high density, due to their alignment by a standard lithographic process. CEA-LETI is embedded in a dynamic and international ecosystem that include European and Global leaders.

 Booth 520
Circuits Multi-Projets (CMP)
46 Avenue Felix Viallet
38000 Grenoble, France
Phone: +33-476-57-46-17
Fax: +33-476-47-38-14
www.mycmp.fr
Contact: Dr. Ajith-Sivadasan Moreau
Email: ajith-sivadasan.moreau@mycmp.fr
CMP offers, at very attractive prices, a set of advanced packaging solutions for 3D IC prototyping. Both active and passive Silicon interposer solutions are now available to designer as well as wafer-level or die–level post-processing for process modules integration (such as TSV and μ-pillars), enabling Silicon to Silicon assemblies for 3D-IC applications. Since 1981, CMP is a Multi-Project Wafer service organization in ICs, Photonic ICs, Smart Power and MEMS for prototyping and low volume production. CMP enables prototypes fabrication on industrial processes at very attractive costs and offers technical expertise and support in providing MPW and related services for researchers from Industrial companies Research Labs and Universities, and More than 600 Institutions from 70 countries have been served, 8100 projects have been prototyped, 74 different technologies have been interfaced. This year CMP will also promote advanced packaging solutions from NEXTS-Europractice consortium, with a focus on silicon photonics packaging.

 Booth 411
Corning Incorporated
One Riverfront Plaza
Corning, NY 14831
Phone: +1-607-974-5331
www.Corning.com
Contact: Zach Barney
Email: barneyz@corning.com
Corning (www.corning.com) is one of the world’s leading innovators in materials science, with a more than 165-year track record of life-changing inventions. Corning applies its unparalleled expertise in glass science, ceramics science, and optical physics along with its deep manufacturing and engineering capabilities to develop category-defining products that transform industries and enhance people’s lives. Corning Precision Glass Solutions is a newer business unit dedicated to glass-based solutions enabling applications in Semiconductors, Computing, and the Internet of Things.

 Booth 407
CPS Technologies Corporation
111 S. Worcester St.
Norton, MA 02766
Phone: +1-407-341-3359
Fax: +1-508-222-0220
www.alsic.com
Contact: Cheryl oliveira
Email: coliveira@alsic.com
CPS Technologies Corporation is the worldwide leader in the design and high-volume production of AlSiC (aluminum silicon carbide) for high thermal conductivity (up to 1000 W/mK with embedded Pyrolytic Graphite) and device compatible thermal expansion. AlSiC thermal management components manufactured by CPS include hermetic electronic packages, heat sinks, microprocessor & flip chip heat spreader lids, Thermal substrates, IGBT base plates, cooler baseplates, Pin Fin baseplates for hybrid electric vehicles, microwave & optoelectronic housings.

 Booth 117
CVinc
990 N. Bowser, Suite 860
Richardson, TX 75081
Phone: +1-972-664-1568
Fax: +1-972-664-1569
www.covinc.com
Contact: Terence Q. Collier
Email: tqcollier@covinc.com
CVInc offers quick turn advanced packaging solutions for assembly and die/wafer bump; single die bumping, partial and complete wafer processing as well as reballing CSP and BGA devices. Custom and off the shelf dummy die, substrates and interposers of silicon, quartz, glass and alumina are available including TGV solutions with filled vias as small as 20um diameter and 25:1 aspect ratios. Solder selections include standard offerings of Pb-free, eSnPb, indium alloys, copper pillars, and gold stud bumps. Plating solutions are ENIG, ENIPIG, eCu and eSn; electrolytic options include Sn, Cu, Ni, Pb, Au and Pd.
For 50 years, DISCO Hi-Tec America, Inc. has been a leader in the semiconductor industry in cutting (Kiru), grinding (Kezuru), and polishing (Migaku) technologies. DISCO’s focus has expanded beyond mechanical dicing to include laser and plasma singulation. DISCO continues to be the leader in wafer thinning and polishing/stress relief with technologies such as SDBG enabling thinning of die to 20um or less. To support the increasing complexity in today’s packages, DISCO has also released equipment that enables thinning of die to 20um or less. To meet the most demanding needs for advanced semiconductor packaging applications, such as bumping, copper pillars and redistribution layer (RDL), passivation, underbump metallization (UBM), thermal interface and lid seal adhesion used for the latest fan-out wafer level packaging (FOWLP), flip chip, system in package (SiP), and 2.5D/3D chip packages.

Booth 123
EDM Performance Materials
A business of Merck, KGaA
Darmstadt, Germany
70 Meister Avenue
Somerville, NJ 08876
Phone: +1-908-429-3578
Fax: +1-908-429-3637
www.emdgroup.com
Contact: Shaun Bennett
Email: Shaun.Bennett@emdgroup.com
EDM Performance Materials is a business of Merck KGaA, Darmstadt, Germany. Our Semiconductor Solutions business unit accelerates the semiconductor industry to develop electronic devices that are smarter, faster, more powerful & energy efficient for a more connected world. We provide highly innovative material-based solutions for the semiconductor manufacturing supply chain. From wafer fabrication towards the final stage, packaging – we are a single channel partner for the production of integrated circuits. Focusing on packaging only, we e.g. offer a variety of Thick Film Resists (TFR) from conventional DNQ & chemically amplified (CA) positive tone photo polymerizing negative tone which are used to make patterned conductor circuitry in semiconductor packages. In addition we deliver high reliability and environmentally friendly interconnect materials to enable powerful semiconductors that are fully lead-free and ROHS compliant. When great minds get together, they inspire each other. We are proud to partner with ECTC again in 2019 to further accelerate innovation in Semiconductors.
one size does not necessarily fit all.
solutions for specific applications. We understand

team works with customers to create effective

Finetech also provides precision dispensers and
areas cover optical packages, sensors, Si
and precision vacuum die bonding. Applications
for given application can be optimized for the
unique needs of each customer, resulting in
a competitive technical advantage. ficonTEC
for specific applications, where each platform
for high-yield and -throughput, precision semi-
and full-automation production environment.
ficonTEC’s system platforms are pre-engineered
for specific applications, where each platform
for given application can be optimized for the
unique needs of each customer, resulting in
a competitive technical advantage. ficonTEC
assists its customers with their ‘lab-to-fab’
activities through collaborative product/process
development activities, leveraging our extensive
experiences for customers’ rapid time-to-market
needs. Please discuss ficonTEC’s capabilities for
your application(s) at our booth.

Finnish

Booth 213
Finetech
560 E. Germann Rd., Suite 103
Gilbert, AZ 85297
Phone: +1-480-893-1630
www.finitechusa.com
Contact: Robert Avila
Email: sales@finitechusa.com
Finetech supplies sub-micron accuracy die bonders for die attach, advanced packaging and micro assembly applications. Manual, motorized and automated models provide a prototype to production pathway. High process flexibility within one platform allows a wide range of bonding technologies: thermo-compression, ultrasonic, eutectic, epoxy, sintering, ACF/ACP, Indium and precision vacuum die bonding. Applications areas cover optical packages, sensors, Si photonics, microLEDs, Cu pillar, flip chip, chip-on-glass, chip-on-flex, MCM, MEMs and more. Finetech also provides precision dispensers and advanced network systems for today’s challenging applications. Our deep process knowledge adds value to our equipment — our engineering team works with customers to create effective solutions for specific applications. We understand that “one size” does not necessarily fit all.

Booth 217
FlipChip International
Division of Huatian Tech. Group
3701 E. University Dr.
Phoenix, AZ 85034
Phone: +1-602-431-6020
www.flipchip.com
FCI supplies turnkey advanced packaging and test services focused on the consumer, automotive, medical and industrial industries. FCI supports a wide range of customers frequently partnering with them to engineer customized solutions including expeditied bumping and backend services on Multi-Project Wafers. FCI is a leader in wafer level packaging with patented technologies spanning from Cu Pillar Bumping, Spheron™ Wafer Level Chipscale Packaging, and ChipsetT™ Embedded Die Packaging. FCI is a division of Huatian Technologies (HT). HT is among the top 5 OSATs in the world with 1.3 billion dollars in annual revenue. It is listed on the Shenzhen Stock Exchange Market. Huatian Technology Group operates six ISO/IAS6949 factories located within China and the US. Huatian’s world class factories offer a complete range of semiconductor packaging and turnkey services.

Booth 416
Fraunhofer Center for Applied Microstructure Diagnostics CAM
Heideallee 19
06120 Halle (Saale), Germany
Phone: +49-345-55-89-130
Fax: +49-345-55-89-101
www.cam.fraunhofer.de
Contact: Prof. Dr. Matthias Petzold
Email: matthias.petzold@imws.fraunhofer.de
Fraunhofer IMWS-CAM is a leading service provider of failure diagnostics and material assessment for industry including semiconductor technologies, microelectronic components, microsystems and nanostructured materials. We consider the entire work flow from non-destructive defect localization over high precision target preparation to cutting edge nanoanalytics supplemented by micro-mechanical testing, finite element modeling and numerical simulation. Our goal is to support cooperation partners in introducing innovative materials and technologies, improving manufacturing process steps, securing reliable field use of components, analyzing field returns, and consequently optimizing manufacturing yield, product quality, reliability, and cost efficiency. In addition, we are collaborating with suppliers of microstructure diagnostics and material testing equipment in developing innovative failure analysis methods and instrumentation, problem-adapted work flows for quality and reliability control, and new industry-compatible applications for future markets.
Thick Package IC's enabling a new evolution in electronics. Semiconductor-on-Polymer™ (SoP) technology is set to rise to prominence for thin Flexible Hybrid Electronics (FHE) by 2020 as consumers seek revolutionary experiences.

Booth 516

Henki Corporation

1400 Jamboree Rd.

Irving, CA 91626

Phone: +1-949-344-6688

Fax: +1-714-368-2265

Contact: Eva Laus

Email: electronics@henkel.com

Henki is the premier materials supplier for the electronics assembly and semiconductor packaging industries. Our advanced formulations include a range of products that facilitate electrical interconnect, provide structural integrity, offer critical protection, and transfer heat for reliable performance. We're proud to create products that improve today's electronic technologies and enable tomorrow's advances.

Booth 100

Heraeus Electronics

24 Union Hill Rd

Conshohocken, PA 19428

Phone: +1-610-825-6050

www.heraeus-electronics.com

Contact: James Wertin

Email: james.wertin@heraeus.com

Heraeus Electronics provides an innovative product portfolio and trusted expertise in engineering. With applications centers all over the world Heraeus aims to provide next generation solutions for the electronic industry focusing on reliability, thermal management, and cost control while operating at peak performance. Heraeus serves several markets including semiconductor, automotive, power electronics, LED and consumer electronics with advanced products like solder paste, sinter paste, thick film inks, metal substrates and direct copper bonded substrates. Our knowledge in electronic packaging will shorten your development cycles, lower development costs, and bring next generation products to market faster.

Booth 212

Hitachi Chemical Co., Ltd.

1-9-2, Marunouchi, Chiyoda-ku,

Tokyo 100-6606 Japan

Phone: +81-3-5533-7000

Fax: +81-3-5533-7077

www.hitachi-chem.co.jp

Contact: Tsuyoshi Ogawa

Email: ts-ogawa@hitachi-chem.co.jp

Hitachi Chemical is a leading company in providing various materials used in advanced semiconductor assembly packages, such as FO-WLP/PLP, 2.5 & 3D packages, SIP etc. In addition to those materials, Hitachi Chemical provides “Open Laboratory” located in Japan where any customers can utilize advanced fabrication and analytical equipment to achieve an accelerated development for complex and advanced structures. The Open Laboratory will relocate to more convenient location, closer to Tokyo, in Q4 2018. Our sales offices are located around the world, with technical engineers stationed to support customers in case of need. Please contact us if you are interested in “Open Laboratory” and materials such as die bonding films, molding related materials (EMC of solid, fine granular, liquid and film, and release film), underfill (CUF and NCF), temporary adhesives, photo-sensitive dielectric, dry film resist, solder resist, organic laminates (including low DK/Df dielectric) and much more.

Booth 121

i3 Electronics

100 Eldredge St.

Binghamton, NY 13901

Phone: +1-607-238-7077

www.i3electronics.com

i3 Electronics, Inc., with headquarters in Binghamton, NY, is a vertically integrated provider of high performance electronic solutions consisting of design and fabrication of printed circuit boards and advanced semiconductor packaging, full turnkey services for printed circuit board assembly and integrated circuits assembly and test, systems integration, cable and harness manufacturing, heterogeneous MCM, die extraction and reassembly and world class reliability and failure analysis laboratories. i3 unites advanced technology and technical know-how with a robust manufacturing environment to meet the current and emerging needs of the most demanding markets, including defense and aerospace, communications and computing, advanced test equipment, and medical.

Booth 210

IBM Canada Ltd.

23 Airport Blvd

Bromont, Quebec, Canada J2L 1A3

Phone: +1-450-534-6496

Cell: +1-450-531-2474

www.ibm.com/assembly

Contact: Luc Comtois

Email: assembly@ca.ibm.com

At IBM Assembly and Test Facility in Bromont, we have asserted our proposition in several key areas providing solutions for high current and high thermal dissipation applications in computing electronics market and developing specialized areas with attractive know- how in RF, Antennas, SIP and advanced opto electronic packaging for communication and wireless markets. Beyond our technical orientation, our experienced engineering team takes pride in using its design, assembly and test expertise to provide tailor-made solutions for our client’s needs and bring forth designs, prototypes and fast manufacturing ramp ups that are key to our client’s success. Several fruitful collaborations have been enacted in the past months and we already have received feedback that it provides high value to the customers that have chosen us as their development and manufacturing OSAT solution. Clients also see value in our supply chain management proposition. Clearly beyond the customer-supplier relationship, we value true partnerships for mutual growth. We have an exciting 2019 roadmap, some of the highlights include deploying high density interconnect laminates, pursuing integration and optimization of SiP packages and also deploying technical milestones to prepare for dense optical integration which is highly anticipated by several key players of the communications market in the years ahead.

Booth 57

Integrated Service Technology (IST)

2381 Zanker Road Suite 120

San Jose, CA 95131

Phone: +1-408-627-5749

www.istgroup.com

Contact: Edward Lee

Email: USSales@istgroup.com

Founded in 1994 in Taiwan, IST began its business from IC circuit debugging and modification and gradually expanded its scope of operations, including Failure Analysis, Reliability Verification, Material Analysis, Automotive Electronic Verification Platforms and Signal Integrity Testing Services. IST has offered full-scope verification and analysis services to the IC engineering industry, its customers cover the whole spectrum of the electronics industry from IC design to end products. In response to IST’s mission of providing integrated solutions to customers, IST not only focuses on its core laboratory services but also enters the mass production services

Booth 511

Interconnect Systems, Inc.

741 Flynn Rd.

Camarillo, CA 93012

Phone: +1-805-482-2870

Fax: +1-805-482-8470

www.isipkg.com

Contact: Tom Casey

Email: info@isipkg.com

Interconnect Systems International, LLC (“ISI”), specializes in high-density module packaging, advanced interconnect and real-time signal processing hardware. ISI offers design, qualification, and testing, coupled with fully integrated in-house manufacturing. ISI’s system design capabilities include hardware, firmware and software and high-density PCB design. ISI’s additional capabilities include custom manufacturing process development, fine pitch SMT, flip chip, wire bond assembly, IC packaging, custom molding, over molding, and automated optical inspection.
Phased array radar, telecom, avionics and space. Including RF/MW, ASICs, MPUs, graphics and high-density PCBs for numerous applications.

Booth 402
J CET
46429 Landing Parkway
Fremont, CA 94538
Phone: +1-510-979-8000
Fax: +1-510-979-8001
www.statschippac.com
Contact: Chris Stai
Email: Christopher.Stai@statschippac.com
STATS ChipPAC is a leading outsourcing provider of semiconductor design, wafer bump, packaging and test solutions for well-established market such as communications, consumer and computing as well as emerging markets in automotive electronics, Internet of Things (IoT) and wearable devices. STATS ChipPAC is a member of the J CET group of companies. J CET is one of the top semiconductor packaging and test providers in the world and the largest OSAT provider in China. Headquartered in Jiangyin, China, J CET has an extensive global manufacturing base with operations in China, Singapore and South Korea. The comprehensive packaging portfolio of J CET and its subsidiaries include discrete, leaded, laminate, flip chip, Molded Interconnect System, wafer level packaging and System-in-Package technologies. For more information, visit www.statschippac.com or www.jcetglobal.com.

Booth 519
JFE Shoji
JFE Shoji Bldg., Oremachi 2-Chome Chiyoda-ku, Tokyo Japan 100-0004
Contact: Sosuke Kobayashi
Email: sosuke-kobayashi@jfe-shoji-ele.co.jp

Booth 208
JSR Micro, Inc.
1280 N. Mathilda Ave.
Sunnyvale, CA 94089
Phone: +1-408-543-8800
Fax: +1-408-543-8964
www.jsrmicro.com
Email: atseng@jsrmicro.com
JSR’s TH8 series of thick film photoresists, along with WPR series of dielectric coatings and LP series of lift-off photoresists, offer advanced packaging technology portfolios to enable manufacturing of WL-CSP, Flip Chip, TSV, LED and MEMS devices with fine-pitched and cost effective micro-bump, Cu-pillar, RDL, and lift-off processes.

Booth 310
Kyocera America
1401 Route 52, Suite 203
Fishkill, NY 12524
Phone: +1-845-896-0480
Contact: Tony Soldano
Email: tony.soldano@kyocera.com
Kyocera International, Inc., Semiconductor Components Group offers an extensive array of organic FC-CSP / FC-BGA / SHDBU packages, complex ceramic modules, embedded PWB, and high-density PCBs for numerous applications including RF/MW, ASICs, MPUs, graphics processors, data centers, power semiconductors, phased array radar, telecom, avionics and space.
Group companies create continual improvements in photonics assembly product lines. These Nagase modules, disk drive, printed electronics and negative photoresist for semiconductor, circuit technology focus on electronic materials and for Pb-free. Engineered Materials Systems, Inc. Paste (NCP) for Fine pitch FC-PKG, Underfill for FOWLP, 2.5D, 3D, SiP, Non-Conductive semiconductor encapsulant of epoxy resin, Nagase ChemteX is a leading company for www.nagasechemtex.co.jp/en/ Fax: +1-408-567-9729 Phone: +1-408-567-9728 Santa Clara, CA 95054 Nagase America Corporation Booth 406 2880 Lakeside Drive, Suite 320 Santa Clara, CA 95054 Phone: +1-408-567-9728 Fax: +1-408-567-9729 www.nagasechemtex.co.jp/en/ Contact: Ippei Yamai Email: ippei.yamai@nagase-nam.com Nagase Chemtex is a leading company for semiconductor encapsulant of epoxy resin, especially Liquid Molding Compound (LMC) for FOWLP, 2.5D, 3D, SIP, Non-Conductive Paste (NCP) for Fine pitch FC-PKG, Underfill for Pb-free. Engineered Materials Systems, Inc. technology focus on electronic materials and negative photoresist for semiconductor, circuit assembly, photovoltaic, printer head, camera module, disk drive, printed electronics and photonics assembly product lines. These Nagase Group companies create continual improvements guiding its customers into the future.

Booth 205 NAMICS Technologies, Inc. 2055 Gateway Place, Suite 480 San Jose, CA 95110 Phone: +1-408-516-4611 Fax: +1-408-516-4617 www.namics.co.jp/e Contact: Tony Ruscigno Email: sales@namics-usa.com NAMICS is a global technology leader for underfills, encapsulants, adhesives, and insulating and conductive materials used by producers of semiconductor devices, passive components and solar cells with over 70 years of experience and expertise. Headquartered in Niigata, Japan with subsidiaries in the USA, Europe, Taiwan, Singapore, Korea, Hong Kong, and China, NAMICS serves its worldwide customers with enabling products for leading edge applications. We build more than products; we build relationships setting the gold standard for customer service by offering customizing products, world class customer support to provide a solution for your personal application. NAMICS CORPORATION is a leading source for underfills, encapsulants, adhesives, and insulating and conductive materials used by producers of semiconductor devices, passive components and solar cells. Headquartered in Niigata, Japan with subsidiaries in the USA, Europe, Taiwan, Singapore, Korea and China, NAMICS serves its worldwide customers with enabling products for leading edge applications.

Booth: 111 nepes Corporation 9605 Scranton Road, Suite 402 San Diego, CA 92121 Phone: +1-858-429-6703 Cell: +1-669-264-6385 www.nepes.us Contact: Masayuki Oe Email: sales@nepes.us nepes is a leading-edge provider of Wafer Level Packaging, Panel Level Packaging and turnkey assembly solutions including testing and DPP services. Since 2001, nepes has been providing OSAT services in partnership with Fabless and IDM customers worldwide. With ISO/TS 16949, ISO 14001, OHSAS 18001 and AEO certified facilities located in South Korea and China, nepes provides an extensive range of packages: bump, wafer level package (WLP), fan-out wafer level package (FO-WLP), fan-out wafer level System in Package (FOWL-SIP) as well as 2 and 3D modules. Its PLP (Panel Level Package) has revolutionized the mass production of advanced semiconductor packages while providing price competitiveness by utilizing an innovative process and structure based on extensive touch screen panel (TSP) and LCD production experience. nepes is well positioned to support leading semiconductor companies, foundries and electronics IDMs with their advanced packaging requirements.

Booth 218 Neu Dynamics Corp. 110 Steamwhistle Dr. Ivyland, PA 18974 Phone: +1-215-355-2460 Fax: +1-215-355-7365 www.neudynamics.com Contact: Don Johnson Email: sales@neudynamics.com Neu Dynamics/NDC International, is a distributor of a wide range of back-end semiconductor assembly packaging equipment and materials for microelectronics including the following companies. Our portfolio includes Hamni Semiconductor, Boschman Advanced Packaging Technology, ATi, Micro Point Pro, Pink, Kulicke & Soffa, Master Machinery Corp, Haacker Automation, FA Systems Automation. We also supply automatic and semi-automatic trim and form dies and systems supplied with trim presses (both Servo and Hydraulic driven). Neu Dynamics further offers contract transfer molding services. Our fully equipped molding lab allows for mold tryouts, pilot runs and low to medium volume production. Neu Dynamics is also capable of building high precision injection molds specializing in insert and over-molding applications.

Booth 318 Nikon Metrology, Inc. 12701 Grand River Ave. Brighton, MI 48116 Phone: +1-810-220-4360 Fax: +1-810-220-4300 www.nikonmetrology.com Email: sales.nn.m.us@nikon.com Nikon Metrology, Inc. offers the most complete and innovative metrology product portfolio, with state-of-the-art vision measuring instruments x-ray machines with CT options, and a complete line of 3D metrology options. These reliable and innovative solutions respond to the advanced inspection requirements of manufacturers active in aerospace, electronics, automotive and other industries. To learn more about our innovative products and to view all our product lines please visit our website.

Booth 414 Nitto Inc. Bayside Business Park 48500 Fremont Blvd. Fremont, CA 94538 Phone: +1-510-445-5400 Fax: +1-510-445-5480 www.nitto.com Contact: Yasuko Ferris Email: yasuko.ferris@nitto.com Nitto is a global supplier of materials and equipment for semiconductor manufacturing, represented by the following products: ELEP holder tapes for back-grinding and dicing; high temperature resistant masking tape; NEL machines (Taper/Detaper/ Wafer Mounter with or without peeling function/ UV machine) for thin wafer application; ELEPMOUNT (2-in-1:...
DAF+Dicing Tape conductive/non-conductive) for thin stacked chip package; REVALPHA thermal-release tape for various applications, such as dicing, grinding and MLCC production process; clear molding compound and sheet encapsulating resin.

Booth 507
Nordson DAGE
2747 Loker Avenue
West Carlsbad, CA 92010
Phone: +1-858-246-1662
www.nordsondage.com
Contact: Aram Kardjian
Email: aram.kardjian@nordsondage.com
Nordson DAGE manufacturers wire pull, ball and die shear test systems along with X-Ray inspection systems that are recognized as the industry standard. The 4800 bondtester brings the latest developments in automated wafer testing technology to users testing wafers from 200mm upwards. When combined with an integrated wafer handling device the 4800-INTEGRA™ can test multiple wafers consecutively. Automation on non-wafer samples can also be conducted on the 4000Plus which performs shear tests up to 200kg, pull tests up to 100kg and push tests up to 50kg. The 4000HS high speed bond tester is used for pull and shear testing of solder spheres to identify brittle fractures at speeds up to 4mm/sec in shear and 1.3mm/sec pull. Technologies such as TSV, PoP, 2.5D and 3D integration demand a new level of metrology. The XM8000 intelligent X-ray metrology system delivers fully automated, non-destructive, radiation safe defect detection of all complex devices.

Booth 509
Nordson SONOSCAN
2149 East Pratt Blvd.
Elk Grove Village, IL 60007
Phone: +1-847-437-6400
Fax: +1-847-437-1550
www.nordsonsonoscan.com
Contact: Jim Ries
Email: james.ries@nordsonsonoscan.com
Nordson SONOSCAN is a worldwide leader and innovator in Acoustic Micro Imaging (AMI) technology. We manufacture acoustic microscope instruments and automated inspection equipment to nondestructively inspect and analyze products. Our C-SAM® scanning acoustic microscope provides unmatched accuracy and robustness setting the standard in AMI for the inspection of products for hidden internal defects such as poor bonding, delaminations between layers, cracks and voids. In addition, we offer analytical services through regional testing laboratories in Asia, Europe and the U.S. and educational workshops for beginners to advance users on AMI technology.

Booth 417
NTK Technologies, Inc
3979 Freedom Circle Drive, Suite 320
Santa Clara, CA 95054
Phone: +1-408-727-5180
www.ntktech.com
Contact: Mariel Stoops
Email: mstoops@ntktech.com
NTK Technologies is a leader in IC Ceramic Packaging. For nearly half a century, NTK has developed specialized technologies to provide advanced ceramic IC packaging solutions for large and start-up semiconductor companies. NTK’s technical centers support design optimization and simulation through all development and production stages — prototype, small volume, and volume manufacturing. With global service centers, NTK offers a wide range of packaging materials and design services for MEMS Sensors, CMOS/CCD Image Sensors, Opto, FPGA, CPU, MPU, MCM, RF, LED Substrates, Hi-Rel, Satellite, Automotive and Medical applications. Wafer Probe Substrates utilizing multilayer co-fired ceramic and multilayer thin film available. Optimum package designs for 10G to 400G. As one of the industries’ largest packaging manufacturers, NTK’s products and services have evolved to match the roadmaps of mainstream and advanced IC packaging applications.

Booth 529
Ntrium Inc.
Lvi 2, 54-42 Dongtanhan I-gil, Hwaseong-si, Gyeonggi-do, 18423
Republic of Korea
Phone: +82-31-6131147
Fax: +82-31-6131449
www.ntrium.com
Contact: Paul Kang
Email: paul.kang@ntrium.com
We are Nano Alchemists! and EMI/EMC total solution provider. Ntrium is presented with the opportunity to converge Nano-material technology and the Microelectronics packaging technology of Automotive/Semiconductor/ Mobile/IT products, to ignite bright minds that solve technical problems customers face, to provide collaborative and innovative solutions. Our product list is as follows.
EMI shielding paste for spraying method / EMI shielding Film / EMI absorber / Conductive Bonding Film for camera module / Thermal Interface Material(TIM) / Conductive Particles for Elastomer Test Socket / Conductive Beads for Anisotropic Conductive Film(ACF). Do you have the interested with our products or technology? Please visit our booth or contact us.

Booth 404
PAC TECH USA
328 Martin Ave.
Santa Clara, CA 95050
Phone: +1-408-588-1925 x246
Fax: +1-408-588-1927
www.pactech.com
Contact: Berndt Otto
Email: berndt.otto@pactech.com
Pac Tech - Packaging Technologies GmbH (group member of NAGASE & CO. Ltd.) is headquartered in Germany with wholly owned subsidiaries: PacTech USA Inc. in Silicon Valley, USA, and PacTech ASIA Sdn. Bhd. in Penang, Malaysia. PacTech is comprised of three business units: EQUIPMENT MANUFACTURING: Manual & Automatic ENIG & ENEPiG plating tools, Laser solder jetting equipment, Wafer-level solder ball transfer systems, Laser assisted flip-chip bonders. SUBCONTRACT SERVICES: Flip Chip and Wafer Level Package Bumping Services including ENIG or ENEPiG for UBM (solder bumping) or OPM (wirebonds). Other services include Electroplating, Laser Solder Jetting, Wafer Level Solder Balling, Re-passivation, RDL, Backmetal, Wafer Thinning, Wafer Dicing, Tape & Reel, AOI, X-Ray, SEM, FIB. CHEMISTRY: Pre-Treatment and process chemistry for electroless plating.

Booth 408
Palomar Technologies Inc.
2728 Loker Avenue West
Carlsbad, CA 92010
Phone: +1-760-931-3600
Fax: +1-760-931-5191
www.palomartechnologies.com
Email: sales@bonders.com
Palomar Technologies makes the connected world possible by delivering a Total Process Solution™ for advanced photonic and microelectronic device assembly processes utilized in today’s smart, connected devices. With a focus on flexibility, speed and accuracy, Palomar’s Total Process Solution includes Palomar die bonders, Palomar wire and wedge bonders, SST vacuum reflow systems, along with Innovation Centers for outsourced manufacturing and assembly, and Customer Support services, that together deliver improved production quality and yield, reduced assembly times, and rapid ROI. With its deep industry expertise, Palomar equips customers to become leaders in the development of complex, digital technologies that are the foundation of the connected world and the transmission of data generated by billions of connected devices. Palomar solutions are utilized by the world’s leading companies providing solutions for datacom, 5G, electric vehicle power modules, autonomous vehicles/LiDAR, enhanced mobile broadband, Internet of Things, SMART technology, and mission critical services.
Plasma-Therm’s products have been meeting the requirements of both R&D and volume applications. Manufacturers, academic and government institutions depend on Plasma-Therm equipment, designed with “lab-to-fab” flexibility to meet the requirements of both R&D and volume production. Plasma-Therm’s products have been adopted globally and have earned their reputation for value, reliability, and world-class support.

Plasma-Therm is a U.S. manufacturer of advanced plasma-processing equipment, providing etch, deposition, and plasma dicing technologies used in semiconductor packaging, solid-state lighting, power, data storage, renewable energy, MEMS, nanotechnology, photonics, and wireless communication markets. Plasma-Therm’s VERSALINE® platform is the workhorse for a variety of applications in specialty semiconductor markets. The platform’s modular design allows flexible configuration of substrate handling and technologies that address the wide range of customer requirements. Plasma-Therm’s SINGULATOR® systems bring the precision and speed of plasma dicing to chip-packaging applications. Manufacturers, academic and governmental institutions depend on Plasma-Therm equipment, designed with “lab-to-fab” flexibility to meet the requirements of both R&D and volume production. Plasma-Therm’s products have been adopted globally and have earned their reputation for value, reliability, and world-class support.

Booth: 214
Panasonic
1701 Golf Road, Ste 3-1200
Rolling Meadows, IL 60008
Phone: +1-847-637-9600
Fax: +1-847-637-9601
www.panasonicfa.com
Contact: Tae Yi
Email: mikewohlner@us.panasonic.com
Panasonic System Solutions Company of North America – Process Automation (PSSNA-PA) develops and supports innovative manufacturing processes around the core of circuit manufacturing technologies and computer-integrated manufacturing software—thereby, contributing to the growth and prosperity of our customers’ businesses regardless of their mix or volume.

Booth 216
Panasonic Industrial Devices Sales Company of America
Division of Panasonic Corporation of North America
205 Ravendale Drive
Mountain View, CA 94043
Phone: 408-861-3946
www.industrial.panasonic.com
www.products/electronic-materials
Since the founding of our company in 1918, we at Panasonic have been providing better living for our customers, always making ‘people’ central to our activities, and thus focusing on ‘people’s lives’.

Booth: 514
Promex Industries Inc.
3075 Oakmead Village Drive
Santa Clara, CA 95051
Phone: +1-408-496-0222
www.promex-ind.com
Contact: Rosie Medina
Email: rmedina@promex-ind.com
Promex delivers innovative IC packaging and heterogeneous assembly solutions for medical, biotech and sensor-based microelectronic devices from its 30,000-sq.ft. Santa Clara, CA facility which includes Class 100/1000 cleanrooms. It features a highly skilled engineering team, broad technical capabilities, advanced packaging, microelectronics assembly expertise, scalable manufacturing capacity and is CA-FDB licensed to manufacture Class 1 & Class 2 medical devices. Onsite services include RoHS-optimized SMT, wafer thinning, dicing, wirebond, flip chip and overmolding.

Booth 307
Pure Technologies
177 US Hwy # 1, No. 306
Tectesta, FL 33469 USA
Phone: +1-404-964-3791
Fax: +1-877-738-8263
Int’l Fax: +1-973-273-2132
www.puretechnologies.com
Contact: Jerry Cohn
Email: jerry@puretechnologies.com
Pure Technologies manufactures low (0.02, 0.01 cph/cm2), ultra-low (0.005, 0.002 cph/2) and super ultra-low (<0.001 cph/cm2) alpha emitting TiN (Sn), Lead-Free (including all SAC) alloys, Pb, Pb/Sn , Bi and virtually all alloys for over 23 years. These ALPHAALO® products are available in various shapes and sizes — ingots, anodes, slugs, pellets, foil, rods, bricks, PbO and SnO powder, etc. for wafer-level packaging, interconnects, electroplating and sphere and powder/paste manufacturing. ALPHA-LO® reduces/eliminates soft errors from alpha particle emissions from solder, enhances performance reliability and reduces corporate liability. All materials are guaranteed and certified to be at secular equilibrium and are tested and retested over time before shipping insuring that the alpha emission rate is stable and will not increase over time.

Booth 107
Royce Instruments
480 Technology Way
Napa, CA 94558
Phone: +1-707-255-9078
Fax: +1-707-255-9079
www.royceinstruments.com
Contact: Bill Coney
Email: bconey@royceinstruments.com
Royce Instruments, your preeminent supplier for Bond Testing and Die Sorting equipment. Our high-precision equipment covers the spectrum of bond test and die sorting requirements. Since bond testing and die sorting are our sole focus, we are dedicated to developing and supplying dynamic solutions for our customers. The Royce 600 Series Bond Testers bring unparalleled networking capability and scalability to the market. With three bond testers, Royce offers an instrument solution to meet the evolving needs of institutions worldwide. Royce Die Sorters (DE35-ST, MP300, and AP+) offer semi- and fully automatic die sorting solutions for die as small as 200um square or 50um thick. Our new automated sorter, the AP+, has the capability to handle diverse input and output mediums (carrier tape, waffle pack, Gel-Pak, Jedec, film frame and more) while maintaining input to output traceability at the die level. Visit us at booth #108 to learn more!
Booths 312, 314
Samtec, Inc.
520 Park East Blvd.
New Albany, IN 47150
Phone: +1-812-944-6733
Fax: +1-812-948-5047
www.samtec.com
Contact: Glenn Dixon
Email: glenn.dixon@samtec.com
Known as the worldwide service leader for electronic connectors and cables, Samtec has focused on leading edge high speed products and services for the last two decades. The tremendous success in these areas has driven Samtec to further move into faster and smaller arenas. We now provide full turnkey solutions for your entire signal chain from chips, through substrates, packages, connectors and cables. Samtec can help you design, model, layout, and assemble your products. Samtec continues to focus on our industry-leading FireFly™ mid-board optical/photonic engine design and manufacturing. In addition, Samtec has new capabilities in glass interposers and substrates with low loss electrical characteristics for biomedical, military/aerospace, sensors, connectivity, and industrial applications.

Booth 413
Savansys
10409 Peonia Court
Austin, TX 78733
Phone: +1-512-402-9943
www.savansys.com
Contact: Amy Palesko
Email: amy@savansys.com
Savansys is the industry standard choice for electronics manufacturing cost modeling. The company began in the mid-nineties with a focus on multi-chip module and PCB fabrication and assembly before expanding into electronics packaging. SavanSys provides both cost modeling services and software products and maintains an extensive library of manufacturing activity costs. Projects range from multi-year ventures focused on detailed supply chain modeling to one-time projects comparing a new technology to the current industry standard. All SavanSys projects and products use activity based cost modeling, a bottom-up approach to cost that aggregates individual cost contributors (labor, material, throughput, equipment cost, etc.) for every step in a process flow.

Booth 510
SCHOTT North America, Inc.
400 York Avenue
Duryea, PA 18642, USA
Contact: Dave Vanderpool
Phone: +1-407-288-7695
Fax: +1-407-321-8847
www.us.schott.com
Email: dave.vanderpool@us.schott.com
SCHOTT Advanced Optics is a valuable partner for its customers in developing products and customized solutions for applications in optics, lithography, astronomy, opto-electronics, life sciences, and research. With a product portfolio of more than 120 optical glasses, special materials and components, we master the value chain: from customized glass development to high-precision optical product finishing and metrology. SCHOTT is one of the world’s leading suppliers of thin and ultra-thin glass wafers and substrates made of different materials in sizes of between 4” and 12”, with various surface qualities and customized features. The use of proprietary production processes, a wide selection of different materials, and continuous expansion of state-of-the-art processing capabilities make SCHOTT’s wafer offerings unique in the industry. Process Capabilities include polishing, structuring, edge treatment, ultrasonic washing, and clean room packaging. SCHOTT’s portfolio of Thin and Ultra-Thin glasses includes: AF 32® eco, a alkali-free flat glass with a CTE matched to silicon; D 263® eco, a high CTE and high transmission glass; SCHOTT AS 87 eco, a ultra-thin and toughenable glass; B 270®, a crown glass with extremely high CTE; and MEMpax®, an anodic bondable glass with a CTE corresponding to silicon. The portfolio is supplemented by FLEXINITY® TM, SCHOTT’s glass structuring revolution.

Booth 508
Senju Comtek
2989 San Ysidro Way
Santa Clara, CA 95051
Phone: +1-408-234-4792
www.senju-m.co.jp/en
Contact: Ayano Kawa
Email: akawa@senju.com
Senju Comtek Corp. is an American Subsidiary of Senju Metal Industry Co. (SMIC) of Tokyo, Japan. Senju is a global leader in solder materials and related processing equipment with over two dozen manufacturing, technical, and sales support facilities located around the world. Our wide array of solder products includes Cu-core balls/columns, micro-spheres, flux for ball-attach and chip-attach, preforms for power electronics, low-temp solders, and high reliability alloys. Senju offers customized solutions for IC technology challenges.

Booth 423
SET North America
343 Meadow Fox Ln.
Chester, NH 03036
Phone: +1-603-548-7870
Fax: +1-603-887-2000
www.set-na.com
Contact: Matt Phillips
Email: mphillis@set-na.com
SETNA is a Manufacturing and Marketing, Sales and Service Organization centered on our experience and know-how in high-accuracy bonding and the equipment, materials, competencies surrounding including Surface Preparation with Atmospheric Plasma. SET Bonders have been the world-standard for applications in which micron precision post bond accuracy is required. For more than twenty years the FC150 Series has been the tool of choice. The FC300 series bonders provide the highest force and bonding accuracy available in the industry, as well as handling substrates up to 300 mm. The Accura series provide accurate and versatile die bonders for education and R&D. The Ontos® is the atmospheric plasma system, designed by our sister company OES (Ontos Equipment systems), for and dedicated exclusively to the semiconductor manufacturing and packaging industry. Our patented (and patent pending) equipment and processes provide a unique advantage to our customers to enable low-cost, high yield, high-speed, chip-to-chip interconnect bonds at room temperature with minimal force. Ontos Atmospheric Plasma also improves surface activation for direct bonding, aqueous wetting, contamination removal, adhesive bonding, and more.
Book 500
SHENMAO AMERICA, Inc.
2156 Ringwood Ave.
San Jose, CA 95131
Phone: +1-408-943-1755
Cell: +1-408-529-6626
www.shenmao.com
Contact: Hans Schiesser
Email: hschiesser@shenmao.us
SHENMAO America, Inc. is the American Subsidiary of SHENMAO Technology, Inc. of Tao Yuan City 328, Taiwan. Shenmao is a global leader in manufacturing solder materials for over 46 years with ten manufacturing, technical, and sales support facilities located around the world. SHENMAO America, Inc. blends solder paste in San Jose, CA, USA, also supporting a wide range of products for the Semiconductor Packaging and PCB Assembly industries. SHENMAO produces SMT Solder Paste, Laser Soldering Paste, Wave Solder Bar, Solder Wire with/without Flux, Liquid and Paste Flux, Solder Preforms, Semiconductor Packaging Solder Spheres, Wafer Bumping Solder Paste, Dipping Flux, LED Die-Bonding Solder Paste, Plating Anode, and Solar PV Ribbon. 90 % of the largest EMS Companies are valued customers that are continuously using SHENMAO Technology, Inc. Solder Materials with great success. OSAT’s, EMS and OEM’s qualify/re-qualify our products for many years.

Book 306
Shin-Etsu MicroSi, Inc.
10028 S. 51st St.
Phoenix, AZ 85044
Phone: +1-480-893-8898
Fax: +1-480-893-8637
www.microsi.com
Email: info@microsi.com
Shin-Etsu MicroSi, Inc. is a wholly owned subsidiary of Shin-Etsu Chemical Company. Shin-Etsu MicroSi is a world class supplier of packaging materials for the semiconductor industry. With a global support network- Sales Engineers, R&D, Manufacturing, Quality Assurance, and Logistics- we are able to quickly develop and provide new technologies to benefit our customers. This allows our clients to meet their ever changing technical, commercial and environmental needs by implementing Shin-Etsu MicroSi’s technology. Shin-Etsu MicroSi is known for supplying high performance Thermal Interface Materials, Underfills, Molding Compounds, High Purity Silicone Encapsulants, and Die Attach Materials.

Book 420
Shinkawa USA, Inc.
1177 S. Porter Court
Gilbert, AZ 85296
Phone: +1-480-831-7988
www.shinkawa.com/en/
Contact: Doug Day
Email: d_day@shinkawaiusa.com
Shinkawa is a leading supplier of flip chip, die, and wire bonding equipment. The wide range of equipment supports various applications including automotive, server, mobile, and communication devices for the IoT society. For leading edge packaging technology, Shinkawa provides innovative solutions with high-accuracy and ultra-high throughput flip chip bonders for TCB and C2/C4 processes. For die and wire bonding, Shinkawa provides technologies for ultra-thin die pick up for the latest power and memory devices, and unique wire shapes for RF, memory, and many other devices. Our ultimate bonding solutions can automate process selection plus inspection by our 3D technology. Founded in 1959 in Tokyo and with a strong presence today in the semiconductor market, Shinkawa supports a diverse network of global customers.

Book 220
Shinko Electric America
1280 East Arques Avenue MS 275
Sunnyvale, CA 94085
Phone: +1-408-838-3336
Fax: +1-408-955-0368
www.shinko.com
Contact: Lorne Johnson
Email: Lorne.johnson@shinko.com
SHINKO Electric Industries Co., LTD., is a leading manufacturer of products used in the assembly of IC’s such as Organic Substrates, Etched and Stamped Leadframes, TO Packages and Integrated Heatspreaders. We manufacture a full line of Organic Substrate structures including coreless options offering enhanced electrical performance and package miniaturization. SHINKO also provides subcontract IC assembly services with an emphasis on packaging solutions such as PoP, SIP as well as advanced technologies such as Molded Core Embedded Package (MCeP®) and Module assembly and test. Our headquarters and primary production plants are in the greater Nagano, Japan area. In addition to our production facilities we also provide the ultimate in service and solutions for customers, with Sales and Engineering support Worldwide. See us to learn more about our latest product offerings for fine pitch interconnection, miniaturization and high density mounting for 3D assembly.

Book 206
SPTS Technologies Ltd
Ringland Way, Newport, NP18 2TA
Phone: +0044-1633-414-000
www.orbotech.com/spts
Contact: Wendy Davis
Email: enquiries@spts.com
SPTS Technologies, an Orbotech company, designs, manufactures, sells, and supports advanced etch, PVD, CVD, and MVD® wafer processing equipment and solutions for the global semiconductor and micro-device industries, with focus on the Advanced Packaging, MEMS, high speed RF device, power management and LED markets. SPTS also offers Additive Printing solutions for 3D structural printing of dams and isolating layers for IC packaging and package marking. SPTS has manufacturing facilities in Newport, Wales and Allentown, Pennsylvania, and operates across 19 countries in Europe, North America and Asia-Pacific.

Book 119
SUSS MicroTec Inc.
A SUSS MicroTec AG Company
220 Klug Circle
Corona, CA 92880-5409
Phone: +1-951-817-3700
Fax: +1-951-817-0640
www.suss.com
Contact: info@suss.com
SUSS MicroTec is a leading supplier of equipment and process solutions for microstructuring in the semiconductor industry and related markets. Our portfolio covers a comprehensive range of products and solutions for backend lithography, wafer bonding and photomask processing, complemented by micro-optical components. In close cooperation with research institutes and industry partners SUSS MicroTec contributes to the advancement of next-generation technologies such as 3D Integration and Imprint Lithography as well as key processes for WLP, MEMS and LED manufacturing. With its global infrastructure for applications and service, SUSS MicroTec supports more than 8,000 installed systems worldwide.

Book 501
TAIYO INK MFG. CO., LTD
2675 Antler Drive
Carson City, NV 89701
Phone: +1-619-208-0748
www.taiyo-hd.co.jp/en/
Contact: Yuya Suzuki
Email: YuyaS@taiyo-america.com
TAIYO INK MFG. CO., LTD has more than 90% market share of solder resist products on IC-Packaging industry. TAIYO introduced two new solder resist products to the market: AUS AZ3 and AUS SR3. AZ3 provides highly robust T5 crack resistance with high Tg, best for large body FC-BGA and high temperature automotive BGA products. SR3 offers quite low CTE (15-20ppm) with high modulus (>10GPa), being ideal for coreless/thin core applications. TAIYO additionally offer a photo-imageable dry film material with high resolution, PVI-3 HR100S. PVI-3 HR100S can be applied as a high-density build-up material for BGA substrates/ interposers, as an insulation material for embedded applications, and as an RDL dielectric for WLP / PLP products. TAIYO also develops magnetic ink materials for next generation packaging. For more details, please visit our booth.

Book 517
TATSUTA USA Inc.
101 Metro Drive, Suite 355
San Jose, CA 95110
Phone: +1-408-642-1938
Fax: +1-408-982-3391
www.tatsuta.com
Contact: Mike Sakaguchi
Email: m-sakaguchi@tatsuta.com
TATSUTA is leading provider of EMI shielding conductive material for semiconductor industry. TATSUTA provides innovative solutions for conformal and compartment shielding. TATSUTA also provides AIP bonding & printed antenna
paste, wafer backside metallization paste, high reliability metallizing paste for FMV & TGV filling, low temperature curable & solderable paste for circuitry printing, low temperature curable 3D SMT paste. For more details, please visit our booth S17. We will provide solutions for your applications.

Booth 304
TechSearch International Inc.
4801 Spicewood Springs Rd., Ste 150
Austin, TX 78759
Phone: +1-512-372-8887
Fax: +1-512-372-8889
www.techsearchinc.com
Contact: Jan Vardaman, Andrea Myers
Email: tsi@techsearchinc.com
TechSearch International, Inc. has a 30-year history of market and technology trend analysis focused on semiconductor packaging, materials, and assembly. Research topics include WLP, FO-WLP, flip chip, CSPs including stacked die, BGAs, 3D ICs with TSVs, 2.5D interposers, and System-in-Package (SiP), embedded components, ADAS and automotive electronics, and panel-based processing. In conjunction with SavanSys Solutions, wire bond, flip chip, WLP, and 3D IC cost models are offered. TechSearch International professionals have an extensive network of more than 18,000 contacts in North America, Asia, and Europe and travel extensively, visiting major electronics manufacturing operations and research facilities worldwide.

Booth 523
Teikoku Taping Systems
5090 N 40th St. Ste. 140
Phoenix, AZ 85018
Phone: +1-602-367-9916
www.teikoku-taping.com
Contact: Robert Garrett
Email: robert.garrett@teikoku-taping.com
Teikoku Taping System specializes in the design, development and manufacture of semiconductor equipment used for taping (“Haru”), de-taping (“Hagasu”) and handling (“Hakobu”) of wafers and panels. TTS is the leader in Dry Film Resist lamination, as well as the handling of thin wafers for back grind tape laminate, UV irradiation, removal and mounting to dicing tape on film frame. Customer support for demos, process development, field service are all based in our offices in Phoenix, AZ.

Booth 115
ThreeBond International, Inc.
6184 Schumacher Park Dr.
West Chester, OH 45069
Phone: +1-408-638-7091
Fax: +1-513-779-7375
www.threebond.com
Contact: Kensuke Kitamura
Email: kkitamura@threebond.com
Since founded in 1955 in Japan, ThreeBond has been offering the adhesive/sealant products globally with its cutting-edge technologies. ThreeBond has developed networks across six regions: Japan, North/central Americas, south America, Europe, Asia, and China. ThreeBond offers unique products such as water removable temporary bonding adhesive, UV-curing black adhesive, 60°C x 1 minute curing elastic adhesive, moisture blocking adhesive, UV-activated dual curing epoxy, ultra low viscosity (2cP) UV-curing adhesive, high thermally conductive epoxy, etc. Over 1,600 products will provide solutions to the problems you are facing. Ask ThreeBond if you need any specific adhesives or sealants.

Booth 207
TOK America
190 Topaz St.
Milpitas, CA 95035
Phone: +1-408-934-8904
www.tok.co.jp
Contact: Yoshi Arai
Email: Yoshi.arai@tokamerica.com
TOK’s unique packaging / MEMS manufacturing technologies, in terms of both materials and equipment. We have developed and commercialized optimal photoresists and processing equipment for a range of packaging processes. Photoresists for packaging are available for a wide range of production technologies including wafer-level CSP, SIP, RDL, TAB and COF. We have commercialized thick-film permanent photoresists for MEMS, and developed a non-spin coater that can form thick films capable of highly uniform photoresist coating at a 100 µm level with a single application and a developing machine for thick films. We offer high quality, most advanced and most effective processing technologies in the MEMS field as well, thus widely supporting the miniaturization of electronic components in terms of both materials and equipment.

Booth 410, 412
Toray International America
411 Borel Ave., Suite 520
San Mateo, CA 94402
Phone: +1-650-341-7152
Fax: +1-650-341-0845
www.toray.us/products
Contact: Hiroyuki Niwa
Email: h.niwa@toray-intl.com
Toray Industries is a leading provider for Non-Conductive Film (NCF) for flip chip packages, and photo-definable adhesive film for build-up substrates and packages with cavity structure. Toray’s unique polyimide and film processing technologies provide excellent reliability and performance which are already proven in the market. “Photoneece” is Toray’s photo-definable polyimide coatings for front-end buffer layer and back-end re-distribution layer for WLP and TSV. We also offer a newly developed “Photoneece” LT-series, which enables low temperature cure with low residual stress for minimum wafer warpage. Toray Engineering Co., Ltd. provides state-of-the-art Flip Chip Bonding Equipment for semiconductor packaging with alignment accuracy from +/-0.5um. And Vacuum Encapsulation Equipment for void-free printing. Wafer Inspection Equipment with high speed, and substrate manufacturing equipment such as coating system are lined-up.

Booth S05
Towa USA Corporation
1430 Tulley Rd. Ste. 416
San Jose, CA 95122
Phone: +1-408-779-4440
Fax: +1-408-779-4413
www.towajapan.co.jp/en/
Contact: Naoki Hamada
Email: n_hamada@towajapan.co.jp
Towa Corporation is the market leader in providing leading edge molding solutions to the semiconductor industry. Towa proudly offers the latest compression mold solutions for advanced applications such as wafer level molding, large panel molding, stacked die, TSV, Molded Underfill and LED’s. Towa’s compression mold systems have proven to be the most cost effective, technologically advanced solutions for today’s demanding applications. Towa also continues to be the leader in transfer mold systems for MCM, BGA, automotive, and medical packaging applications. Towa has over 30 years of transformative technological leadership to support all your packaging needs.

Booth 415
TRESKY GmbH
Neuendorfstrasse 19 B
16761 Hennigsdorf, Germany
Phone: +49 (0) 3302 866 92-0
www.tresky.de/en/
Contact: Daniel Schultz
Email: daniel.schultze@tresky.de
TRESKY GmbH in Germany offers state of the art automated die bonders. The flexible platform and open architecture allows every possible form of die bonding technology and pick and place process. Including epoxy dispensing, epoxy stamping, flip chip, thermos-sonic, surface mount and eutectic applications. Magazine to magazine automation is available while special R&D software also allows you to assembly prototype pieces with very little programming. Our flexibility and pricing advantages have penetrated all markets including Opto-Electronics, Medical Applications, RF-Wireless, Microwave and Automotive industries. Manufactured in Germany to the highest standards and supported in America by the West Coast and East Coast sales, demo and service offices. We welcome you to our ECTC booth.
Yole Développement
Le Quartz – 75 cours Emile Zola
69100 Lyon-Villeurbanne, France
Phone: +33-472-83-01-80
Fax: +33-472-83-01-83
www.yole.fr
Contact Fanny Vit
Email: Vitrey@yole.fr
Yole Développement has grown to become a group of companies providing marketing, technology and strategy consulting, media and corporate finance services. With a strong focus on emerging applications using silicon and/or micro manufacturing, Yole Group has expanded to include more than 80 collaborators worldwide covering Semiconductor & Software, Power & Wireless, Photonics, Sensing & Display, Life Sciences & Healthcare. Yole and its partners System Plus Consulting, KnowMade, Blumorpho and Piséo support industrial companies, investors and R&D organizations worldwide to help them understand markets and follow technology trends to develop their business. CONSULTING: Market data & research, marketing analysis; Technology analysis; Reverse engineering & costing services; Strategy consulting; Patent analysis; Financial services. REPORTS: Collection of technology & market reports; Manufacturing cost simulation tools; Component reverse engineering & costing analysis; Patent investigation; Cost simulation tool. MEDIA: i-Micronews.com; @Micronews, weekly e-newsletter; Communication & webcasts services; Events: Yole Seminars, Market Briefing.

Booth 313
Yole Développement
69100 Lyon-Villeurbanne, France
Phone: +33-472-83-01-80
Fax: +33-472-83-01-83
www.yole.fr
Contact Fanny Vit
Email: Vitrey@yole.fr
Founded in 1998, Yole Développement has grown to become a group of companies providing marketing, technology and strategy consulting, media and corporate finance services. With a strong focus on emerging applications using silicon and/or micro manufacturing, Yole Group has expanded to include more than 80 collaborators worldwide covering Semiconductor & Software, Power & Wireless, Photonics, Sensing & Display, Life Sciences & Healthcare. Yole and its partners System Plus Consulting, KnowMade, Blumorpho and Piséo support industrial companies, investors and R&D organizations worldwide to help them understand markets and follow technology trends to develop their business. CONSULTING: Market data & research, marketing analysis; Technology analysis; Reverse engineering & costing services; Strategy consulting; Patent analysis; Financial services. REPORTS: Collection of technology & market reports; Manufacturing cost simulation tools; Component reverse engineering & costing analysis; Patent investigation; Cost simulation tool. MEDIA: i-Micronews.com; @Micronews, weekly e-newsletter; Communication & webcasts services; Events: Yole Seminars, Market Briefing.

Booth 101
ZEISS
4385 Hopyard Road
Pleasanton, CA 94588
Phone: +1-925-701-3600
www.ziss.com/pcs
Contact: Victoria Doll
Email: victoria.doll@zeiss.com
ZEISS has the most comprehensive portfolio of light, X-ray, electron beam and ion beam imaging technologies in the industry and is a leading solution provider to the global semiconductor community. Solutions span semiconductor manufacturing from wafer fab through packaging and assembly. For mask making and lithography, ZEISS provides unique solutions in the areas of zero defect, in-die metrology, critical dimension/registration and overlay control. ZEISS innovative process control and failure analysis solutions deliver actionable information to both wafer fab and packaging/assembly processes to meet the semiconductor industry’s challenges for next-generation devices.

Booth 104
Unisem
2241 Calle de Luna
Santa Clara, CA 95054
Phone: +1-408-734-3222
Fax: +1-408-562-9971
www.unisemgroup.com
Contact: Gil Chiu
Email: gchiu@unisemgroup.com
Unisem is a global provider of semiconductor assembly and test services for many of the world’s most successful electronics companies. Unisem offers an integrated suite of packaging and test services such as wafer bumping, wafer probing, wafer grinding, a wide range of leadframe and substrate IC packaging, wafer level CSP and RF, analog, digital and mixed-signal test services. Our turnkey services include design, assembly, test, failure analysis, and electrical and thermal characterization. With approximately 7,000 employees worldwide, Unisem has factory locations in Ipoh, Malaysia; Chengdu, People’s Republic of China and Batam, Indonesia. The company is headquartered in Kuala Lumpur, Malaysia.

Booth 209
XYZTEC
55 Sterling Street
Clinton, MA 01510
Phone: +1-978-880-2598
www.xyztec.com
Contact: Tom Haley
Email: tom.haley@xyztec.com
XYZTEC, Inc. is the technology leader in bond testing. We are constantly innovating a technology that has been basically unchanged for many years. Our award winning Condor Sigma includes a Rotating Measurement unit that allows operators to change between 6 different tests with a simple mouse click. Our automation software now includes a wire detection function that allows complete hands off wire pull testing and our auto grading capability makes shear-testing extremely fast and reliable.

Booth 219
Yield Engineering Systems
203A Lawrence Drive
Livermore, CA 94551
Phone: +1-925-373-8353
www.yieldengineering.com
Contact: Joe Simas
Email: sales@yieldengineering.com
Yield Engineering Systems (YES) supplies the emerging and high-growth market segments beyond FE semi with the high technology they require, though at a quantum reduction in price and cost of ownership: a unique value proposition! Our seamless lab-to-fab “clean, coat and cure” solutions are empowering our customers to create breakthrough technology in a wide range of markets, including Advanced Packaging, Life Sciences, MEMS, Artificial Intelligence, and AR/VR. From cutting-edge research labs to high-volume manufacturers, our Life Sciences users find YES coating systems, with their ability to apply uniform monolayers, valuable in genome sequencing and gene editing applications. Our vacuum cure products, including the YES-VertaCure, continue to support innovation worldwide. And our innovative ÉcoClean plasma cleaning system offers high reliability, a very low cost of ownership, and a frugal footprint. When the future asks for surface modification…YES is the answer!

Booth 504
Xperi - Invensas
3025 Orchard Parkway
San Jose, CA 95134
Phone: +1-408-321-6000
Fax: +1-408-321-8257
www.xperi.com
Contact: Andrew Kim
Email: Andrew.kim@xperi.com
Invensas, a wholly owned subsidiary of Xperi Corporation (Nasdaq: XPER), is the world’s leading provider of advanced semiconductor packaging and 3D interconnect technologies that enable the next generation of electronics products to be smaller, faster, lower power and contain more functionality. Invensas solutions can be found in DRAM memories, image sensors, RF devices, MEMS sensors, processors and mixed signal devices currently in high volume production at leading OEMs, ODMs, and IDMs and integrated into billions of electronic products around the world, including smartphones, tablets, laptops, PCs and data center servers. Invensas technologies include ZiBond®, a low temperature wafer-to-wafer or die-to-wafer bonding, Direct Bond Interconnect (DBI®) wafer-to wafer or die-to-wafer or die-to-die bonding with electrical interconnect, and other chip-scale and multi-chip packaging technologies.

Contact: Andrew Kim
Email: sales@trymax-semiconductor.com
Trymax’s core business is to support semiconductor manufacturers through the world with innovative plasma-based solutions for photo resist removal, surface cleaning, as well as isotropic etch, that are used in the fabrication of integrated circuits and other semiconductor devices. Trymax is a privately held company headquartered in Nijmegen, The Netherlands. Trymax operates regional offices in China (Suzhou) and Italy (Milan). Learn more at www.trymax-semiconductor.com.

Contact: Andrew Kim
Email: sales@trymax-semiconductor.com
Trymax’s core business is to support semiconductor manufacturers through the world with innovative plasma-based solutions for photo resist removal, surface cleaning, as well as isotropic etch, that are used in the fabrication of integrated circuits and other semiconductor devices. Trymax is a privately held company headquartered in Nijmegen, The Netherlands. Trymax operates regional offices in China (Suzhou) and Italy (Milan). Learn more at www.trymax-semiconductor.com.

Contact: Andrew Kim
Email: sales@trymax-semiconductor.com
Trymax’s core business is to support semiconductor manufacturers through the world with innovative plasma-based solutions for photo resist removal, surface cleaning, as well as isotropic etch, that are used in the fabrication of integrated circuits and other semiconductor devices. Trymax is a privately held company headquartered in Nijmegen, The Netherlands. Trymax operates regional offices in China (Suzhou) and Italy (Milan). Learn more at www.trymax-semiconductor.com.

Contact: Andrew Kim
Email: sales@trymax-semiconductor.com
Trymax’s core business is to support semiconductor manufacturers through the world with innovative plasma-based solutions for photo resist removal, surface cleaning, as well as isotropic etch, that are used in the fabrication of integrated circuits and other semiconductor devices. Trymax is a privately held company headquartered in Nijmegen, The Netherlands. Trymax operates regional offices in China (Suzhou) and Italy (Milan). Learn more at www.trymax-semiconductor.com.

Contact: Andrew Kim
Email: sales@trymax-semiconductor.com
Trymax’s core business is to support semiconductor manufacturers through the world with innovative plasma-based solutions for photo resist removal, surface cleaning, as well as isotropic etch, that are used in the fabrication of integrated circuits and other semiconductor devices. Trymax is a privately held company headquartered in Nijmegen, The Netherlands. Trymax operates regional offices in China (Suzhou) and Italy (Milan). Learn more at www.trymax-semiconductor.com.

Contact: Andrew Kim
Email: sales@trymax-semiconductor.com
Trymax’s core business is to support semiconductor manufacturers through the world with innovative plasma-based solutions for photo resist removal, surface cleaning, as well as isotropic etch, that are used in the fabrication of integrated circuits and other semiconductor devices. Trymax is a privately held company headquartered in Nijmegen, The Netherlands. Trymax operates regional offices in China (Suzhou) and Italy (Milan). Learn more at www.trymax-semiconductor.com.

Contact: Andrew Kim
Email: sales@trymax-semiconductor.com
Trymax’s core business is to support semiconductor manufacturers through the world with innovative plasma-based solutions for photo resist removal, surface cleaning, as well as isotropic etch, that are used in the fabrication of integrated circuits and other semiconductor devices. Trymax is a privately held company headquartered in Nijmegen, The Netherlands. Trymax operates regional offices in China (Suzhou) and Italy (Milan). Learn more at www.trymax-semiconductor.com.
Zuken is a global provider of leading-edge software and consulting services for system-level electrical and electronic design and manufacturing. Founded in 1976, Zuken has the longest track record of technological innovation and financial stability in the electronic design automation (EDA) software industry for advanced packaging, printed circuit board design, and multi-domain co-design. The company’s extensive experience, technological expertise and agility, combine to create world-class software solutions. Zuken’s transparent working practices and integrity in all aspects of business produce long-lasting and successful customer partnerships that make Zuken a reliable long-term business partner. Zuken is focused on being a long-term innovation and growth partner. The security of choosing Zuken is further reinforced by the company’s people—the foundation of Zuken’s success. Coming from a wide range of industry sectors, specializing in many different disciplines and advanced technologies, Zuken’s people relate to and understand each company’s unique requirements.

ECTC SPONSORS

With 68 years of history and experience behind us, ECTC is recognized as the premier semiconductor packaging conference and offers an unparalleled opportunity to build relationships with more than 1,500 individuals and organizations committed to driving innovation in semiconductor packaging.

We have a limited number of sponsorship opportunities in a variety of packages to help get your message out to attendees. These include Platinum, Gold, Silver, Program, and several other sponsorship options that can be customized to your company’s interest. If you would like to enhance your presence at ECTC and increase your impact with a sponsorship, please take a look at our sponsorship brochure on the website www.ectc.net under “Sponsors.”

To sign-up for sponsorship or to get more details, please contact Wolfgang Sauter at wsauter2@gmail.com or +1-802-922-3083.
2019 Executive Committee

General Chair
Mark Poliks
Binghamton University
mpoliks@binghamton.edu

Vice-General Chair
Christopher Bower
X-Celeprint Inc.
cbower@x-celeprint.com

Program Chair
Nancy Stoffel
GE Research
nstoffel194@gmail.com

Assistant Program Chair
Rozalia Beica
DuPont
rozzalia.beica@dupont.com

Web Administrator
Ibrahim Guven
Virginia Commonwealth University
iguven@vcu.edu

Jr. Past General Chair
Sam Karikalan
Broadcom Inc.
sam.karikalan@broadcom.com

Sr. Past General Chair
Henning Braunisch
Intel Corporation
braunisch@ieee.org

Sponsorship Chair
Wolfgang Sauter
GLOBALFOUNDRIES
wolfgang.sauter@globalfoundries.com

Finance Chair
Patrick Thompson
Texas Instruments, Inc.
patrick.thompson@ti.com

Publications Chair
Steve Bezk
sbezk@gmail.com

Publicity Chair
Eric Perfecto
eric.perfecto.us@ieee.org

Treasurer
Tom Reynolds
T3 Group LLC
t.reynolds@t3e.org

Exhibits Chair
Joe Gisler
Vector Associates
gislerh.dr@ieee.org

Exhibits Co-Chair
Alan Huffman
Micross Advanced Interconnect Technology
alan.huffman@micross.com

Arrangements Chair
Lisa Renzi Ragor
Renzi & Company, Inc.
lrenzi@renziandco.com

EPS Representative
C. P. Wong
Georgia Institute of Technology
cp.wong@mse.gatech.edu

2019 Program Committee

Applied Reliability

Chair
Deepak Goyal
Intel Corporation
deepak.goyal@intel.com

Assistant Chair
Darvin R. Edwards
Edwards Enterprise Consulting, LLC
darvin.edwards1@gmail.com

Tim Chaudhry
Amkor Technology, Inc.

Tz-Cheng Chiu
National Cheng Kung University

Vikas Gupta
Texas Instruments, Inc.

Sandy Klengel
Fraunhofer Institute for Microstructure of Materials and Systems

Pilin Liu
Intel Corporation

Varughese Mathew
NXP Semiconductors

Toni Mattila
Aalto University

Keith Newman
AMD

Donna M. Noctor
Nokia

S. B. Park
Binghamton University

Lakshmi N. Ramanathan
Microsoft Corporation

René Rongen
NXP Semiconductors

Scott Savage
Medtronic Microelectronics Center

Jeffrey Suhling
Auburn University

Pei-Haw Tsao
TSMC Manufacturing Company, Ltd.

Dongji Xie
NVIDIA Corporation

Assembly & Manufacturing Technology

Chair
Mark Gerber
Advanced Semiconductor Engineering Inc.
mark.gerber@asees.com

Assistant Chair
Jin Yang
Intel Corporation
jin.yang@intel.com

Sai Anikreddi
Soraa, Inc

Christo Bojkov
Qorvo

Garry Cunningham
JHU/APL

Habib Hichri
Suss Microbeam Photonic Systems Inc.

Paul Houston
Engert

Li Jiang
Texas Instruments

Chunho Kim
Medtronic Corporation

Emerging Technologies

Chair
Florian Herrault
HRL Laboratories, LLC
fherrault@hrl.com

Assistant Chair
Benson Chan
Binghamton University
bchan@binghamton.edu

Isaac Robin Abothu
Siemens Healthineers

Meriem Akin
Robert Bosch GmbH

Vasudeva P. Atluri
Renavitas Technologies

Carinheinz Bock
Technische Universität Dresden

Vaidyanathan Chelakara
Acacia Communications

Rabindra N. Das
MIT Lincoln Labs

Dongming He
Qualcomm Technologies, Inc.

Tengfei Jiang
University of Central Florida

Jong-Hoon Kim
Washington State University Vancouver

Ahyeon Koh
Binghamton University

Ramakrishna Kotlanka
Analog Devices

Santosh Kudkar
Analog Devices

Kevin J. Lee
Qorvo Corporation

Zhao Li
Fudan University

Chukwudi Okoro
Coming
Bharat Penmecha
Intel Corporation
C. S. Premachandran
GLOBALFOUNDRIES
Jintang Shang
Southeast University
Rohit Sharma
IIT Ropar
Nancy Stoffel
GE Research
Liu Yang
IBM
Jimin Yao
Intel Corporation
W. Hong Yeo
Georgia Institute of Technology
Hongqing Zhang
IBM Corporation

High-Speed, Wireless & Components
Chair
Wendem Beyene
Intel Corporation
wendem.beyene@intel.com
Assistant Chair
Lianjun Liu
NXP Semiconductor, Inc.
lianjun.liu@NXP.com
Amit P. Agrawal
Microsemi Corporation
Kemal Aygun
Intel Corporation
Eric Beyne
IMEC
Prem Chahal
Michigan State University
Zhaoqing Chen
IBM Corporation
Charles Nan-Cheng Chen
HiSilicon Technologies
Craig Gaw
NXP Semiconductor
Abhilash Goyal
Velodyne LiDAR, Inc.
Xiaoxiong (Kevin) Gu
IBM Corporation
Rockwell Hsu
Cisco Systems, Inc.
Lih-Tyng Hwang
National Sun Yat-Sen University
Bruce Kim
City University of New York
Timothy G. Lenihan
TechSearch International
Rajen M Murugan
Texas Instruments
Nanj Na
Xilinx
Dan Oh
Samsung
P. Markondeya Raj
Florida International University
Hideki Sasaki
Renesas Electronics Corporation

Li-Cheng Shen
Wistrion NeWeb Corporation
Jaemin Shin
Qualcomm Corporation
Manos M. Tentzeris
Georgia Institute of Technology
Maciej Wojnowski
Infineon Technologies AG
Yong-Kyu Yoon
University of Florida

Interconnections
Chair
Wei-Chung Lo
ITRI
lo@itri.org.tw
Assistant Chair
Dingyou Zhang
Broadcom Inc.
dingyouzhang.brcm@gmail.com
Thibault Buissen
Yole Développement
Jian Cai
Tsinghua University
William Chen
Advanced Semiconductor Engineering, Inc.
David Danovitch
University of Sherbrooke
Rajen Dias
Amkor Technology, Inc.
Bernd Ebersberger
Infineon Technologies
Takafumi Fukushima
Tohoku University
Tom Gregorich
Zeiss Semiconductor Manufacturing Technology
Kangwook Lee
Amkor Technology Korea
Steward Lee
Li Li
Cisco Systems, Inc.
Changqing Liu
Loughborough University
Nathan Lower
Rockwell Collins, Inc.
James Lu
Rensselaer Polytechnic Institute
Voya Markovich
Microelectronic Advanced Hardware Consulting, LLC
Lou Nicholls
Amkor Technology, Inc.
Peter Ramm
Fraunhofer EMFT
Katsuyuki Sakuma
IBM Corporation
Lei Shan
IBM Corporation
Ho-Young Son
SK Hynix
Jean-Charles Souriau
CEA Leti
Chuan Seng Tan
Nanyang Technological University
Matthew Yao
GE Energy Management

Materials & Processing
Chair
Mikel Miller
EMD Performance Materials
mikel.miller@emdgroup.com
Assistant Chair
Tanja Braun
Fraunhofer IZM
tanja.braun@izm.fraunhofer.de
Yu-Hua Chen
Unimicron
Qianwen Chen
IBM Research
Bing Deng
IBM Research
Yung-Yu Hsu
Apple Inc.
Lewis Huang
Senju Electronic
C. Robert Kao
National Taiwan University
Chin C. Lee
University of California, Irvine
Alvin Lee
Brewer Science
Yi (Grace) Li
Intel Corporation
Ziyin Lin
Intel Corporation
Yan Liu
Medtronic Inc. USA
Daniel D. Lu
Henkel Corporation
Joon-Seok Oh
Samsung Electro-Mechanics
Praveen Pandojirao-S
Johnson & Johnson
Mark Poliks
Binghamton University
Dwayne Shirley
Inphi
Ivan Shubin
Oracle
Bo Song
HP Inc.
Yoichi Taira
Keio University
Lejun Wang
Qualcomm Technologies, Inc.
Frank Wei
Disco Japan
Kimberly Yess
Brewer Science
Myung Jin Yim
Apple
Hongbin Yu
Arizona State University

Packaging Technologies
Chair
Dean Malta
Micross Advanced Interconnect Technology
dean.malta@micross.com
Assistant Chair
Luke England
GLOBALFOUNDRIES
luke.england@gLOBALFOUNDRIES.com
Daniel Baldwin
H.B. Fuller Company
Bora Baloglu
Amkor Technology

Jie Fu
Apple

Mike Gallagher
DuPont

Ning Ge
Consultant

Allyson Hartzell
Veryst Engineering

Kuldip Johal
Atotech

Beth Keser
Intel Corporation

Young-Gon Kim
Integrated Device Technology, Inc.

Andrew Kim
Intel Corporation

John Knickerbocker
IBM Corporation

Albert Lan
Applied Materials

John H. Lau
ASM Pacific Technology

Jaezik Lee
Nvidia

Markus Leitgeb
AT&S

Luu Nguyen
Texas Instruments Inc.

Deborah S. Patterson
Harbor Electronics, Inc.

Raj Pendse
Facebook R&I (Facebook Reality Labs)

Subhash L. Shinde
Notre Dame University

Joseph W. Soucy
Draper Laboratory

Peng Su
Juniper Networks

Kuo-Chung Yee
Taiwan Semiconductor Manufacturing Corporation, Inc.

Christophe Zincke
Advanced Semiconductor Engineering, Inc.

Photronics
Chair
Ping Zhou
LDX Optronics, Inc.
pzhou@ldxoptronics.com

Assistant Chair
Z. Rena Huang
Rensselaer Polytechnic Institute
zhuang@ecse.rpi.edu

Mark Beranek
Naval Air Systems Command

Stephanie Bernabe
CEA Leti

Fuad Doany
IBM Research

Gordon Elger
Technische Hochschule Ingolstadt

Takaaki Ishigure
Keio University

Ajey Jacob
GLOBALFOUNDRIES

Soon Jang
ficonTEC USA

Harry G. Kellzi
Teledyne Microelectronic Technologies

Richard Pitwon
Resolute Photonics Ltd

Alex Rosiewicz
A2E Partners

Henning Schroeder
Fraunhofer IZM

Andrew Shapiro
JPL

Masato Shishikura
Oclaro Japan

Masao Tokunari
IBM Corporation

Shogo Ura
Kyoto Institute of Technology

Stefan Weiss
II-VI Laser Enterprise GmbH

Feng Yu
Huawei Technologies Japan

Thomas Zahner
OSRAM Opto Semiconductors GmbH

Thermal/Mechanical Simulation & Characterization
Chair
Przemyslaw Gromala
Robert Bosch GmbH
Przemyslawjakub.gromala@de.bosch.com

Assistant Chair
Ning Ye
Western Digital
ning.ye@wdc.com

Christopher J. Bailey
University of Greenwich

Kuo-Ning Chang
National Tsinghua University

Xuejun Fan
Lamar University

Nancy Iwamoto
Honeywell Performance Materials and Technologies

Pradeep Lall
Auburn University

Chang-Chun Lee
National Tsing hua University (NTHU)

Yong Liu
ON Semiconductor

Sheng Liu
Wuhan University

Erdogan Madenci
University of Arizona

Tony Mak
Wentworth Institute of Technology

Karsten Meier
Technische Universität Dresden

Erkan Oterkus
University of Strathclyde

Sandeep Sane
Intel Corporation

Suresh K. Sitaraman
Georgia Institute of Technology

Wei Wang
Qualcomm Technologies, Inc.

G. Q. (Kouchi) Zhang
Delft University of Technology (TUD)

Tieyu Zheng
Microsoft Corporation

Jiantao Zheng
Hisilicon

Interactive Presentations
Chair
Michael Mayer
University of Waterloo
mmayer@uwaterloo.ca

Assistant Chair
Pavel Roy Paladhi
IBM Corporation
Pavel.Roy.Paladhi@ibm.com

Swapan Bhattacharya
Engent Inc.

Rao Bonda
Amkor Technology

Mark Eblen
Kyocera International SC

Ibrahim Guven
Virginia Commonwealth University

Alan Huffmann
Micross Advanced Interconnect Technology

Jeffrey Lee
iST-Integrated Service Technology Inc.

Nam Pham
IBM Corporation

Mark Poliks
Binghamton University

Patrick Thompson
Texas Instruments, Inc.

Kristina Young-Fisher
GLOBALFOUNDRIES

Professional Development Courses
Chair
Kitty Pearsall
Boss Precision, Inc.
kitty.pearsall@gmail.com

Assistant Chair
Jeffrey Suhling
Auburn University
jsuhling@auburn.edu

Deepak Goyal
Microsoft Corporation

Lakshmi N. Ramanathan
Intel Corporation

Interactive Presentations
Chair
Michael Mayer
University of Waterloo
mmayer@uwaterloo.ca

Assistant Chair
Pavel Roy Paladhi
IBM Corporation
Pavel.Roy.Paladhi@ibm.com

Swapan Bhattacharya
Engent Inc.

Rao Bonda
Amkor Technology

Mark Eblen
Kyocera International SC

Ibrahim Guven
Virginia Commonwealth University

Alan Huffmann
Micross Advanced Interconnect Technology

Jeffrey Lee
iST-Integrated Service Technology Inc.

Nam Pham
IBM Corporation

Mark Poliks
Binghamton University

Patrick Thompson
Texas Instruments, Inc.

Kristina Young-Fisher
GLOBALFOUNDRIES

Professional Development Courses
Chair
Kitty Pearsall
Boss Precision, Inc.
kitty.pearsall@gmail.com

Assistant Chair
Jeffrey Suhling
Auburn University
jsuhling@auburn.edu

Deepak Goyal
Microsoft Corporation
First Call for Papers

IEEE 70th Electronic Components and Technology Conference
www.ectc.net
To be held May 26 - May 29, 2020
at The Swan and Dolphin of Orlando, Florida, USA

The Electronic Components and Technology Conference (ECTC) is the premier international electronics symposium that brings together the best in packaging, components and microelectronic systems science, technology and education in an environment of cooperation and technical exchange. ECTC is sponsored by the Electronics Packaging Society (EPS) of the IEEE. You are invited to submit abstracts that provide non-commercial information on new developments, technology and knowledge in the areas including, but not limited to as given below under each technical program subcommittee name. Authors are encouraged to review the sessions of the previous ECTC programs to determine the committee selection for their abstracts.

Applied Reliability
Reliability of TSV, 2.5D, 3D, fan-out, WLCSP, WLFO, PLFO, SI & MCM; Interconnect reliability in flip chip, BGA and wire bond packages; Emerging product reliability including LED, IoT and autonomous vehicles, medical/ wearable electronics; Novel reliability test methods, life models, FA techniques & materials characterization; Drop/dynamic mechanical reliability; Reliability of boards, systems, automotive & harsh environments

Assembly and Manufacturing Technology
Advanced solutions in Packaging & Assembly Technology for mainstream products (Advanced Substrate Enabling Solutions, WLP, FOWLP, Fine Pitch (TSV), Cu pillar, Embedded Devices) like Laser Assisted Bonding, warpage control solutions, etc.; 2.5D/3D integration/high density pkg assembly technology; Packaging and Assembly methods/advancement in new and unique markets/applications like Wearables electronic, Medical & Health pkg.; Manufacturing Automation and Process Improvement for semiconductor pkg/assembly; Trends in Predictive Assembly Modeling: Approach & Validation

Emerging Technologies
Focus on nascent technologies, approaches and applications for: photovoltaic and heterogeneous integration; Security, anti-tampering, smart electronics; Packaging for Quantum, neuromorphic, Superconducting Electronics or Artificial intelligence; Nano-Packaging; Additive Manufacturing, Lab-on-Chip; Wearable and implantable medical electronics; Flexible, stretchable, disposable, dissolvable, self-healing packaging; Emerging MEMS & NEMS

High-Speed, Wireless & Components
Electrical modeling, multi-physics simulation and characterization of Interconnects, components, modules, heterogeneous systems; High-speed and wireless electronics from digital to analog to RF/microwave, millimeter wave to THz; IoT, 5G, Energy efficient computing cloud, data center, autonomous vehicles, AI, and machine learning; Antenna in package, wireless interconnects, wireless power transfer.

Interconnections
Interconnects for fan-out & fan-in wafers & panels; Interconnects and TSV for 2.5D/3D, Si/ glass/organic interposers, PoP & WLP; Flip chip, solder bumping, Cu pillar & thermocompression bonding technology; IMC interfaces, wirebonds & conductive adhesives; Interconnects for bio-medical, automotive, datacenters, cloud, network and harsh environments.

Materials & Processing
Wafer & panel level packaging materials; Materials for harsh environments; Packaging substrates; Flexible, stretchable, & wearable electronics; Wafer bond/debond materials; TSV; Emerging electronic materials & processes; Novel solder metallurgies; Dielectrics and under-fills; Molding compounds; Thermal interface materials; Advanced wirebonding, conductive adhesives

Packaging Technologies (formerly Advanced Packaging)
Architectures, methods, and applications for Fan-Out, wafer & panel level packaging; 2.5 & 3D, TSV & interposer; Heterogeneous and microsystem integration; Embedded & advanced substrates; Advanced flip-chip SIP, CSP, PoP, MEMS, sensors & IoT; Automotive & power electronics; Bio, medical, & wearable packaging

Photonics
Integrated photonic circuits, chips, wafer & panel level; Semiconductor lasers & Novel LEDs; Silicon & III-V photonics; Optical sensors and quantum sensing; Photonic SiP; Optical interconnects, interposers, waveguide and circuit boards technologies; Micro-optical systems; 3D photonics; Free space optical communications; Automotive photonics, LiDAR, 3D-Sensing; Optoelectronic assembly, materials and reliability

Thermal/Mechanical Simulation & Characterization
Component, board & system level modeling for microelectronics; 3D/2.5D; TSV; Interposer; SIP; WLP; BGA; Embedded active/passives; Power modules; LEDs; MEMS; Thin wafer/die handling; Wire bonding & assembly processes; Modeling of fracture mechanics, fatigue, electro-migration, warpage, delamination, drop test & material attributes; Novel modeling including multi-scale and multi-physics; Novel characterization methodologies.

Interactive Presentations
Highly encouraged at ECTC, presenter and attendee often communicate more efficiently here than in oral presentations. Abstracts can relate to any electronics packaging topic. Interactive presentation session papers are published and archived in merit with the other ECTC papers.

Professional Development Courses
In addition to abstracts for papers, proposals are solicited from individuals interested in teaching educational professional development courses (4 hours) on topics described in the Call for Papers. Using the format “Course Objectives/Course Outline/Who Should Attend,” 200-word proposals must be submitted via the website at www.ectc.net by October 16, 2019.

If you have any questions, contact:
Kitty Pearshall
70th ECTC Professional Development Courses Chair
Boss Precision, Inc.
1806 W. Howard Lane, Austin, TX 78728, USA
Phone: +1-512-845-3287
E-mail: kitty.pearsall@gmail.com

You are invited to submit an abstract of no more than 750 words that describes the scope, content, and key points of your proposed paper via the website at www.ectc.net.

If you have any questions, contact:
Rozalia Beica, 70th ECTC Program Chair
DuPont Corporation
rozalia.beica@dupont.com

Abstracts must be received by October 6, 2019. All abstracts must be submitted electronically at www.ectc.net. You must include the mailing address, business telephone number, and email address of presenting author(s) and affiliations of all authors with your submission.
CONFERENCE SPONSORS

PLATINUM
- **ASE GROUP**
 - www.aseglobal.com
- **JCET**
 - www.statschippac.com

GOLD
- **Amkor Technology**
 - www.amkor.com
- **Asahi KASEI**
 - www.asahi-kasei.co.jp
- **ATOTECH**
 - www.atotech.com
- **Cadence**
 - www.cadence.com
- **CORNING**
 - www.corning.com/worldwide
- **Deca Technologies**
 - www.decatechnologies.com
- **Dupont**
 - www.dupont.com/electronic-materials
- **E V G**
 - www.evgroup.com
- **Evatec**
 - www.evatecnet.com
- **IBM**
 - www.ibm.com
- **IST**
 - www.istgroup.com
- **Lintec USA**
 - www.lintec-usa.com
- **Micross**
 - www.micross.com
- **Nepes Corporation**
 - www.nepes.us
- **Pactech**
 - www.pactech.com
- **SPIL**
 - www.spil.com
- **SPTS**
 - www.spts.com
- **Suss MicroTec**
 - www.suss.com
- **Taiyo Ink**
 - www.taiyo-hd.co.jp
- **Xperi**
 - www.inversas.com
- **Zeiss**
 - www.zeiss.com/PCS

SILVER
- **Applied Materials**
 - www.appliedmaterials.com
- **Micron**
 - www.micron.com
- **Lam Research**
 - www.lamresearch.com
- **Smoltek**
 - www.smoltek.com

PROGRAM
- **Averasemi**
 - averasemi.com
- **Brewer Science**
 - www.brewerscience.com
- **Globalfoundries**
 - www.globalfoundries.com
- **Sekisui**
 - www.sekisuichemical.com
- **Yieldengineering**
 - www.yieldengineering.com
CONFERENCE SPONSORS

<table>
<thead>
<tr>
<th>TOTE BAGS</th>
<th>BADGE LANYARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMD Performance Materials</td>
<td>HD MicroSystems</td>
</tr>
<tr>
<td>www.emdgroup.com</td>
<td>www.hdmicrosystems.com</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STUDENT RECEPTION AND BEST STUDENT INTERACTIVE PRESENTATION</th>
<th>INTEL BEST STUDENT PAPER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texas Instruments</td>
<td>Intel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INTERNET</th>
<th>THUMB DRIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camtek</td>
<td>Amkor Technology</td>
</tr>
<tr>
<td>www.camtek.com</td>
<td>www.amkor.com</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REFRESHMENT BREAK</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AGC</td>
<td>Fujifilm</td>
</tr>
<tr>
<td>www.agc.com</td>
<td>www.fujifilmusa.com</td>
</tr>
<tr>
<td>Microsoft</td>
<td>JSR Micro</td>
</tr>
<tr>
<td>www.microsoft.com</td>
<td>www.jsrmicro.com</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEDIA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>i-Micronews</td>
<td>3DInCites</td>
</tr>
<tr>
<td>www.i-micronews.com</td>
<td>www.3dincites.com</td>
</tr>
<tr>
<td>Solid State Technology</td>
<td>Magnetics</td>
</tr>
<tr>
<td>electroiq.com</td>
<td>www.magneticsmagazine.com</td>
</tr>
<tr>
<td>MEPTEC</td>
<td>MEMS Journal</td>
</tr>
<tr>
<td>www.meptec.com</td>
<td>www.memsjournal.com</td>
</tr>
<tr>
<td>ElectroIQ</td>
<td>Yole</td>
</tr>
</tbody>
</table>

Official Media Sponsor

Chip Scale Review

The Future of Semiconductor Packaging

www.chipscalerereview.com

Additional Media Sponsors

i-Micronews

Powered by Yole Développement

www.i-micronews.com

3D InCites

www.3dincites.com

CIRCUITS ASSEMBLY

www.circuitassembly.com

Solid State Technology

www.electroiq.com

Magnetics Business & Technology

www.magneticsmagazine.com

MEMS Journal

www.memsjournal.com

MEPTEC

www.meptec.com

Semiconductor Packaging News

www.semiconductorpackagingnews.com

Yole Développement

www.yole.fr
The fun and splendor of Walt Disney World and the greater Orlando area awaits you in 2020. In the heart of the Walt Disney World® Resort, the award-winning Walt Disney World Swan and Dolphin Resort is your gateway to Central Florida’s greatest theme parks and attractions. The resort is located in between Epcot® and Disney’s Hollywood Studios™, and nearby Disney’s Animal Kingdom® Theme Park and Magic Kingdom® Park. Come discover our 17 world-class restaurants and lounges, sophisticated guest rooms with Westin Heavenly Beds® and the luxurious Mandara Spa. Enjoy five pools, two health clubs, tennis, nearby golf, and many special Disney benefits, including complimentary transportation to Walt Disney World Theme Parks and Attractions, and the Extra Magic Hours benefit.

Just minutes from the Walt Disney World Swan and Dolphin Resort is Downtown Disney’s West Side and Marketplace. Downtown Disney’s West Side showcases top-notch restaurants, a 24-screen AMC Pleasure Island movie theater, and other uncommon shops. Here you’ll also find the exquisite Cirque du Soleil La Nouba live entertainment show and the DisneyQuest Indoor Interactive theme park.

Downtown Disney Marketplace provides an appealing place to take a break from Disney Theme Parks and Water Parks. Check out the largest Disney character store in the world. Or, for more of a respite, relax and dine at a lakeside restaurant.

Should you decide to explore outside the Greater Lake Buena Vista area, Orlando boasts other parks and recreation areas tailor made for whatever your pleasure. Favorites include Universal Orlando, SeaWorld, Gatorland, and Winter Park.
MARK YOUR CALENDARS NOW!

ECTC

The 2020 IEEE 70th Electronic Components and Technology Conference

Walt Disney World Swan & Dolphin Resort
Lake Buena Vista, Florida
May 26-29, 2020

www.ectc.net

SPONSORED BY:

IEEE ELECTRONICS PACKAGING SOCIETY IEEE