Multi-physics modelling for Flexible Hybrid Electronics

Swaminathan Madhavan

Center for Co-Design of Chip, Package, System (C3PS)
Georgia Institute of Technology
Multi-physics modelling for Flexible Hybrid Electronics

- Stretching
- Bending
- Twisting

Electrical Simulation
Mechanical Simulation
Thermal Simulation

- Modeling operating conditions important
- Possible scenarios:
 - Mechanical loading changes electrical response due to geometrical changes
 - Mechanical loading changes electrical properties

- Questions to be answered:
 - Are such effects important?
 - How do you model the electrical response in such scenarios?
 - Are the commercially available tools adequate?
 - How complex are such simulations?
 - Can you develop models that are predictive and capture behavior?
Aerosol Jet Printed Microstrip Line

- 5 mil Kapton Polyimide with single-sided 18 µm Copper coating
- UTD silver nano-ink

Modeling

Testing Structures

- De-embedding
- Lines

Electrical Response Changes with Bending (Modeling)

- Insertion Loss for Tensile Bending Lines
- Return Loss for Compressive Bending Lines

Measurement

- Tensile
- Compressive

Electrical Response Doesn’t Change with Bending (Measurement)

- Are Modeling Tools Incorrect?
- No (In this Case)
- Difficulty in replicating measurement setup in the Tool is the problem!
• 5 mil Kapton Polyimide with 18 µm Copper ground plane
• Silver ink 10.5 µm

- With decreasing panel separation both the inductance and Quality Factor decrease (measurements).
- Modeling captures this effect partially!
Screen Printed Power Inductor (Multiple Cycles)

- Tensile Bending
- Four Cycles
- Flat – 15mm Panel Separation – Flat -
- Substantial change in Inductance & Q Factor
- Unable to capture the Memory effect in Modeling!
Tools have reasonable capability to share Mechanical and Electrical Geometric Models
 - Challenge
 - Unable to reproduce the exact mechanical loading conditions

Multi-physics Modeling
 - Challenges
 - Requires significant user expertise to set-up model
 - Numerical instability a problem sometimes
 - Does not account for any electrical property change due to mechanical loading (Ex: Resistance Change)
 - Does not account for any memory effects (Ex: Multiple cycle bending)
 - CPU & Memory Intensive

What needs to happen for FHE to succeed
 - Tools need to be well calibrated with measurements, gaps identified & solutions developed to fill gaps.
 - Predictive modeling required that is Super Fast and error free
 - Correlate Multi-physics model with Measurements
 - Rely on tools to generate data samples
 - Use Machine Learning to develop predictive model
 - Incorporate into Process Design Kits (PDK)