Thermal Sign-Off Analysis for Advanced 3D IC Integration

Dr. John Parry, CEng.
Senior Industry Manager
Mechanical Analysis Division

May 27, 2018
Topics

- Acknowledgements
- Thermal Challenges
- Issues with Existing Solutions
- Thermal Analysis Flow Requirements
- How to Achieve Accuracy
- Early Co-Design Exploration
- Late Co-Design Refinement & Optimization
- Project Saraha Example
- Prediction vs. Experiment
- Questions Answered(?)
I’d like to thank:

- Pascal Vivet (CEA-Leti, Grenoble) for his kind permission to use material presented at DAC and Mentor U2U conferences
- Lee Wang (Mentor D2S) for her support on the Calibre flow
- Byron Blackmore (Mentor MAD) for his support on FloTHERM.
Thermal Challenges

- Thermal issues in 3D ICs:
 - Higher power density
 - Heat removed through stacked dies
 - Die bonding increases vertical thermal resistance
 - Thinned dies increases lateral thermal resistance
 - Non-homogeneous distribution of 3D connections

- Dies are becoming more non-uniform in temperature; and

- Dies thermally interact: self-heating is augmented by neighbouring die
Issues with Existing Solutions (CAE-Leti view)

“Gaps” in the two main thermal analysis flows:

1. Traditional FEM/CFD/Multiphysics simulation tools
 - Model setup is complex
 - No support for the ASIC design flow
 - Generally unable to handle complexity of analysis:
 - Number of discrete objects, sources etc.
 - Meshing challenges
 - Long solution times

2. ASIC design flow:
 - Poor or no support for 3D integration
 - Limited/simplistic support for package
 - Inaccurate representation of package boundary conditions
Thermal Analysis Flow Requirements

- Main objective is to support the IC design flow:
 - Aim to get best overall design, or at least a design that works

- Detailed die-level thermal analysis needs an accurate package model and boundary conditions
 - Heat does not respect packaging levels!

- From **Design Exploration** in early design...
 - Requires speed and agility

- ... To final **Sign-Off**
 - Requires both high accuracy and automation

- UX: Must be compatible with 3D integration technology and integrated into the ASIC design flow.
Accuracy and How to Achieve it

- **Effective Thermal Property Extraction from layout (EFFP)**
 - Compute equivalent anisotropic thermal properties to reduce thermal model complexity
 - Dramatic reduction of geometry count leads to significant simulation speed up
 - Adjustable granularity for accuracy vs. CPU time trade-off

- **Support for IPF: from gate-level/device-level power analysis**
 - Fine-grain power maps to capture hotspot effects
 - Automatic compression of power sources in very high instance count designs to accelerate simulation

- **Automation**
 - Automatic constraint checks to avoid error-prone and time-consuming manual verification of thermal constraints
 - Fast, automatic gridding and automatic time step generation for thermal analysis
Early Co-Design: Design Space Exploration

- **IC:**
 - 3D partitioning,
 - Chiplet placement
 - Die-die interface layer design
 - Block and TSV floorplans,
 - Package selection

- **Package/Board/Heatsink:**
 - Package I/O connection to board layers
 - Package design exploration (e.g. copper lid)
 - Optimization of TIM layers
 - Heatsink design (e.g. base thickness).
Late Co-Design: Refinement & Design Optimization

IC:
- Detailed die layout import:
 - LEF/DEF, GDS and OASIS
 - Fine-grain power maps (IPF)
- Gate-level thermal simulations

Package:
- Detailed representation
- Material optimization
- Transient analyses
- Thermal environment.

Static and Transient Thermal Simulations

3D Geometry Specification

Thermal Material Properties

IPRparser

Gate-level / Device-level Power Analysis

Package model & air flow conditions

LEF/DEF GDSII

Thermal Constraints

Project Sahara

Optional for higher accuracy

3D IC/package Assembly View

Thermal Violations

Thermal Maps

Thermal Waveforms

Detailed & Summary reports

Thermal Results Database
Project Sahara Example from CEA Leti

- 3D 4G Telecom network-on-chip example: 4% worst case error
 - 150,000 3D structures (TSVs, μ-bumps) in 9 layer BEOL ~30 mins
 - Convert IPF power maps (20M instances; ~3M per file) <2 mins
 - Thermal simulation of complete packaged 3D IC ~50 mins

Detailed gate-level power maps

Chiplet: Calibre thermal results database

Original detailed layout (BEOL)
Questions Answered(?)

1. **What is the state-of-the-art in co-design?**
 - For IC/package thermal co-design, broadly what has been covered here
 - Thermal IC/package co-design is moving from research into use in design
 - Fast, fine-detail analysis is possible
 - High level of automation can be achieved in both simulation and rule checking

2. **What key challenges need to be overcome?**
 - Technically, thermal co-design is feasible today
 - Main challenge is awareness raising:
 - Need to do thermal design is often not recognized (until it is too late)
 - After 30 years, people are still using Θ_{JC} in hand calculations for system design

3. **What needs to happen for these challenges to be overcome?**
 - IEEE Heterogeneous Integration Roadmap will help raise awareness of the challenges, and give pointers to possible solutions.