Electronic Interconnect Convergence

... through large panel fan-out

Tim Olson

Founder & CTO

Remember when? ... there were 3 distinct industries

Wafer Foundries

Semiconductor Device

Nanometers

OSATs

Packaging
10's of Microns

EMS

Electronic Systems
100's of Microns

Remember when? ... there were 3 distinct industries

Wafer Foundries

Semiconductor Device

Nanometers

OSATs

Packaging

10's of Microns

EMS

Electronic Systems

100's of Microns

Today, the lines are blurring

IEEE 67th ECTC -Orlando, FL, USA May 30 - June 2, 2017

... while electronic interconnect cost remains quite different

Device Level Electronic Interconnect

<u>Technology</u> Digital processor	Typical Geometries 14 nm	Typical Cost 6 ¢ per mm²
RF	55 to 180nm	2¢ per mm²

Packaging - 1st Level Elec. Interconnect Typical Cost

Flip chip CSP packaging 0.7 ¢ per mm²

EMS - 2nd Level Elec. Interconnect

10 layer Smartphone motherboard 0.5 ¢ per mm²

Typical Cost

Where does large panel fan-out fit?

Technology Cost Comparison (Sales price to customers)

The basics of cost for capacity

Wafer Processing Cost 300mm round baseline*

Large panel fan-out has the potential for >30% cost reduction

- Capital productivity
- Material efficiency

Breaking through the barriers

Wafer level capital cost breakthrough

Solar wafer fab inspired approach

Chip attach cost breakthrough

Adaptive Alignment*

Align the entire RDL pattern to the measured die position

Enables high metal density designs Precisely aligns inductors to the die

Adaptive Routing*

Dynamically adapt RDL routing to the measured die position

BGA array fixed to package outline Enables multi-die fan-out

*Note: Multiple patents issued & pending

... the future is near

... in cooperation with ASE

Initial Production

300mm round

M-Series Structure*

Future Production

(post chip attach)

(post mold & debond)

Large panel format M-Series*

*Note: Multiple patents issued & pending

Thank You

