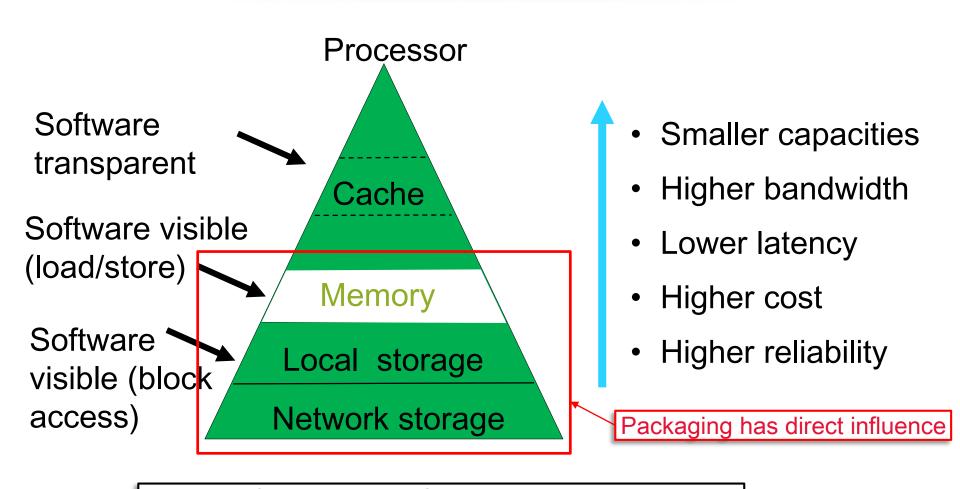
Mean to Packaging Technology

Ravi Mahajan May 31, 2016

Key Contributors: Suresh Chittor, Randy Osborne, Bob Sankman


Key Messages

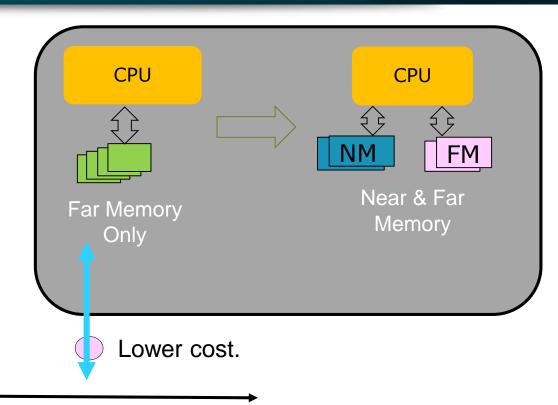
- CPU-Memory (DRAM) BW has increased > 2x every 2.5 years over the past decade (ISSCC 2016)
- Bringing Memory closer the CPU improves power efficiency & performance
 - High performance computing solutions already use On-Package memory to improve performance
 - Packaging innovations will continue to be needed to develop <u>cost</u>
 <u>effective MCP integration schemes</u> to support demand scaling and help proliferation of on-package memory integration

Background: Memory Hierarchy (Suresh Chittor, ISSCC 2015)

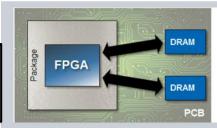
Cache/Memory/Storage Hierarchy –

Key to optimizing performance/cost/power

Memory Hierarchy


Higher power efficiency.

Standard cost, performance and power efficiency.

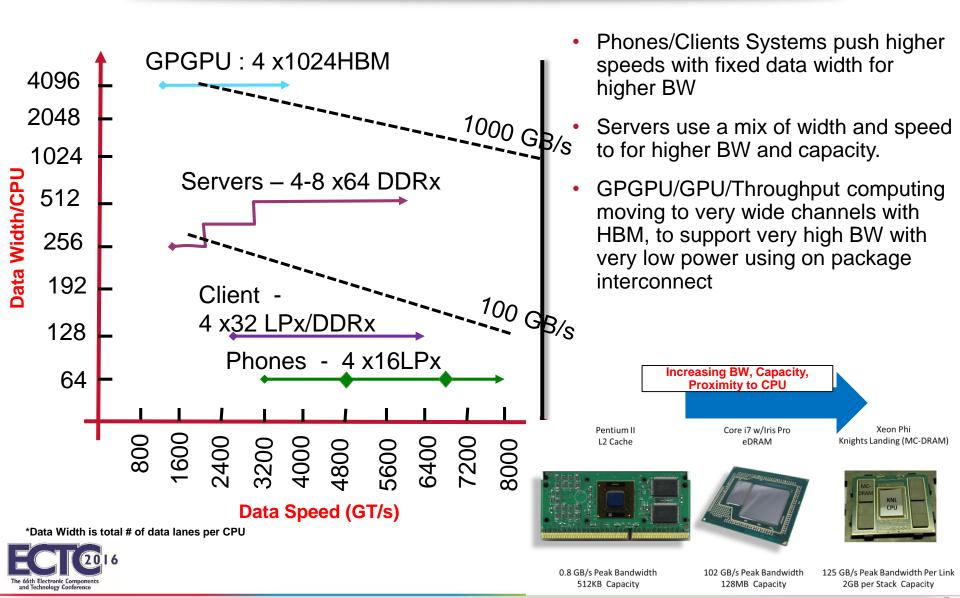

Capacity

On-Package Memory Integration Enables Higher Performance, Lower Power and Smaller Footprints

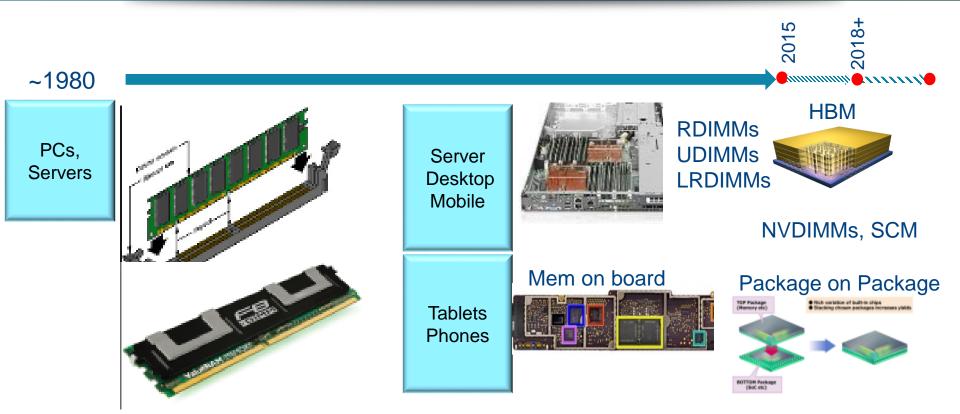
Bandwidth

Far Memory

- Higher Power
- Largest Footprint


Near Memory

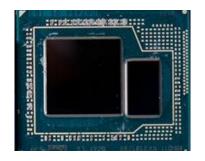
- Highest Bandwidth
- Lowest Power Smallest Footprint


Near Memory vs. Far Memory

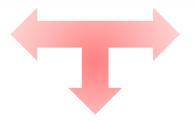
Altera's Stratix 10 DRAM SiP solutions are a near memory implementation, in that high-density DRAM is integrated very close to the FPGA, within the same package. In this configuration, the in-package memory is accessible significantly faster, up to 10X higher bandwidth, when compared to traditional main memory. A near-memory configuration also reduces system power by reducing traces between the FPGA and memory, while also reducing board area.

Speed & Data Width Trends

Memory: Industry trends



- Simple DIMM based Far Memory Solutions are evolving towards (Far + Near Memory) Solutions
 - Number of NVM solutions available or in development (See ISSCC 2016 Trends for a complete list)



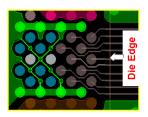
Emerging devices and Form Factors

In-package DRAM Cache

HBM - 3D Stacked DRAM
High power efficiency, but limited capacity per device.

High BW and Low latency

Memory on board : More compact FF

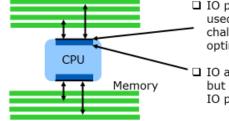

Other High capacity DIMMs, lower cost, lower BW and higher latency in the works

What Does this mean to Packaging?

Evolution of Dense MCPs

Key Package Design Metrics

- Wires/mm of Die Edge
- Signal Data Rate
- Energy/bit

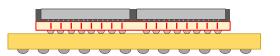

IO/mm/lyr = 28-34 IO/mm/lyr 103*

FCXGA,

* Oi et. al. 2014 ECTC report 2µm L/S, 25µm pad

HDI Organic Package/Interposer

CPU interface to memory.


Suresh Chittor

- IO perimeter (Si edge used) is the most
 challenged - needs to be optimized.
- IO area is also non-trivial, but more manageable than IO perimeter.
- Most CPU die are beginning to get IO limited with increased integration.
- BW per mm of die edge needs to continue to improve => Number of wires per mm, bits per wire, and speed need to improve.

ISSCC Forum 2015

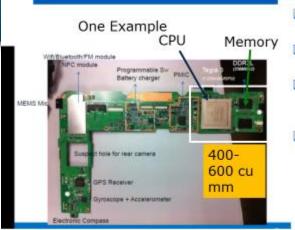
Need to optimize CPU IO for perimeter, area and power.

EMIB

Silicon Interposer

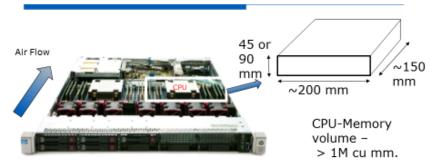
IO/mm/lyr = 250

- Large number of IO's needed for Wide and Slow busses (e.g. HBM @ 1024 bits)
- Need power efficient, wide interconnects between CPU and memory



Packaging Challenges

- Power efficient on and offpackage Memory Links
- Effective component and system Thermal solutions for the Entire CPU-Memory complex
- Cost effective interconnect scaling to for Dense MCPs and PoP solutions


Form-factor: Phones/tablets

- Double sided board,
 X/Y and Z constrained.
- Total board area for electronics shrinking.
- CPU package is 200-300 sq mm, <1 mm thickness.
- Memory device and package size comparable to CPU, located adjacent (on side or top of) to CPU.

CPU and memory thermally coupled. Memory power affects CPU power and performance.

Form-factor: Servers

- Rack (shown above) or blade FF used for server platform.
 Typically 1U or 2U height for racks (1.75" or 3.5").
- Significantly larger volume for CPU+memory but also need many memory devices (compared to phones/tablets).
- Platforms are thermally constrained. Memory power limited.

Suresh Chittor

ISSCC Forum 2015

Key Messages

- CPU-Memory (DRAM) BW has increased > 2x every 2.5 years over the past decade (ISSCC 2016)
- Bringing Memory closer the CPU improves power efficiency & performance
 - High performance computing solutions already use On-Package memory to improve performance
 - Packaging innovations will continue to be needed to develop cost effective MCP integration schemes to support demand scaling and help proliferation of on-package memory integration

