Architecture or Package Design, Which Comes First?

Craig Hampel *Rambus Inc.* Sunnyvale, CA, USA

IEEE 66th ECTC – Las Vegas, NV, USA

May 31 – June 3, 2016

How does the availability of TSVd memory effect system architecture?

- Provide an introduction to applications for DRAM that utilize TSV and 3D technologies
- Discuss the options of TSVs being applied to increase bandwidth
- Discuss the architectural implications of these devices in building high bandwidth memory solution
- Summarize and compare high bandwidth memory systems

Applications of Through Silicon Via for DRAM

3

High Performance TSV Applications

Silicon substrate interface Wide 1024 Slower 2Gb/s data rate 128-256 GB/s Bidirectional data

Fairly simple logic layer

External PCB interface 32 x 4 or 2 I/Os per HMC High speed serial interface 10-30Gb/s data rate 160-320 GB/s total Unidirectional busses

Advanced features in logic layer

Distribution of Memory Functions

- In shorter channels all memory functions can be performed in controller
- DRAM side logic die is primarily used for manufacturability and shared functions like voltage regulation, BIST etc...

• Longer serial channels encourage packetization and more memory functions in DRAM side logic die

DRAM Management Historically - HBM

- Transaction scheduling
- DRAM even timing
- Transaction ordering
- DRAM state page policy
- Request priorities
- Data formats data scrambling
- Error detection/correction
- Bank/row/channel mapping

Processor

Optimizations

In situ repair

- Manufacturing time repair
- Minimum, "binned" and fully deterministic response times
- Undefined/non coherent data

DRAM Optimizations

Self refresh

DRAM

IEEE 66th ECTC – Las Vegas, NV, USA

Craig Hampel

Data

Clock & Command

Memory

Control

Functions

May 31 – June 3, 2016

6

DRAM Management - HMC

• Data formats – data scrambling

Processor

Optimizations

• Transaction scheduling - nondeterministic

DRAM Optimizations

- DRAM event timing
- Transaction ordering
- DRAM state page policy
- Request priorities
- Error detection/correction
- In situ repair

DRAM

Bank/row/channel mapping

Data

Clock & Command

Memory

Control Functions

DRAM Functional Optimizations:

Execution and Application Aware

- Data type and priority
- Earliest awareness of address and type of access
- System level QOS requirements
- System level power management

Memory Environment Aware

- Memory characteristics aware
- Earliest access to data and errors
- Memory environment aware
- Memory timing aware dynamic
- Storage characteristics aware

HBM Memory System

- Traditional DRAM interface
- Wide, slow, data bus
 - HBM: 1 Gbps
 - HBM2: 2 Gbps
- Signaling
 - Bidirectional data bus allows dynamic allocation
 - Control functions reside near host processor
- Co-packaged memory
 - Channel is short
 - Silicon substrate required with DRAM near processor
 - Substrate trace length : 7 mm

DRAM

9

HMC Memory Systems

- Discrete independent full memory system
- Good for for HPC/Server (CPU) & Network (NPU) Applications
 - Ideal for steady state workloads with equal read-write ratio
 - HMC logic performs many of the functions typically in a CPU
 - 160 320 GB/s Memory BW

Comparison of HBM and HMC Memory Systems

Variables	HBM	HBM2	НМС	HMC2
VDD (V)	1.5	1.5	1.35	1.2
Max. Data Rate (Gbps)	1	2	15	30
Bus Width (bits)	1024		4 Links (16 TX/RX lanes per link)	
Max Stack Bandwidth (GB/s)	128	256	120	320
Signaling	Single ended		Differential	
Interface	Wide Parallel		Serial	
Channel overhead	Short		Long	
Format	In a Si Interposer		Stand alone as a complete package	
Control distribution in logic	Simple DRAM like		Advanced Transactional	

Rambus

3D Memory System Summary

- TSVs provide a number of potential benefits
 - Increased capacity like 3DS
 - Reduced power like wide-I/O
 - Higher bandwidth in systems like HBM and HMC
- Different packaging decisions and allocation of functions in the logic layer make HMC and HBM very different

