Disclaimer: This presentation is for informational purposes. The development, release, and timing of any features or functionality described in this document remains at the sole discretion of Oracle.

http://www.oracle.com/us/products/networking/overview/index.html

Optical Interconnect Packaging for the Cloud IEEE ECTC 2016

A. V. Krishnamoorthy Architect and Chief Technologist, Photonics Oracle Networking

Optical Link Technology Penetration

ORACLE

Processor IO Requirements

System Interconnect Evolution --- The Past

Mostly Electrical

- 2.5Gbps-15Gbps/Lane
- LR SerDes
 - Re-timers required at every hop
- BW*Density Limited
 - Both ASIC and front panel
- BW*Distance Limited

Network System Realization --- Magnum M9

O. Torudbakken & A. Krishnamoorthy, OFC OTu3H.1, 2013

System Interconnect Evolution --- The Present Mostly Optical

- 25+Gbps/Lane
- SR SerDes
- Re-timers optional
- Optics replace the lossiest Cu interconnects
- Eliminates front panel bandwidth-density limit
 - At least 8x improvement
- ASIC still bandwidth-density limited
- Improved signaling across entire system

Network System Realization --- The Present Nano-Magnum, 2016

, Proc. IEEE Optical Interconnects Conf., 2016

Leaf: >4Tb/s; <0.3KW

Spine: >24Tb/s; <3KW

Virtualized I/O & SDN

Oracle InfiniBand Switch IS2-46

Leaf Switch

, Proc. IEEE Optical Interconnects Conf., 2016

Oracle InfiniBand Switch IS2-254

Spine Switch

Proc. IEEE Optical Interconnects Conf., 2016

System Interfaces

- IB Switch & Router Uplinks
 - 12 EDR ports (4 x 12x)
- Ethernet Gateways
- 2 MPO ports for 40-GE connectivity
- Ethernet Management
 - 4 RJ45 ports for 1-GE connectivity

Module Slots

- Switch Modules
- Line and Fabric; 24Tbps switching capacity;
- I/O Modules
 - 4x10GBase-T, 4x40-GE, 16x10-GE
 - 2x16G FC; 4xIB-EDR Extended Reach (40km)
- Network Services Modules

System Interconnect Evolution --- The Future The Last 100mm

- 50+Gbps/Lane
- Integration of the high-speed interfaces at the package substrate (MCM)
 - Package Opto-Electronic Module (POEM)
- Lightweight (XSR/USR) SerDes
 - Optimal energy efficiency
 - No Re-timers
- Addresses bw*density limitations at the ASIC

Intra-Package Optics

EO conversion next to ASIC die

Power Reduction Potential: Another 3.5x? R&D prototype 16 port switch, 20Gbps/port, GbE signaling: <20pJ/switched bit with VCSELS and CMOS switch flip-chip co-packaged _____, IEEE JSTQE, 17(2), 2011

ORACLE

Take-aways

- Bandwidth-Distance ("Scale-out") and Bandwidth-Density ("Scale-up") requirements are driving adoption of optical technologies
- For scale-out, growth in bandwidth-distance products continue to drive optics adoption
 - 100Gbps-m for multi-mode; 1Tbps-m (or 1Gbps-km) for single-mode
- For scale-up, compute trends continue to drive single-lane data rates
 Doubles every 3-4 years to balance bandwidth requirements to pin limitations
- The electrical channel continues to be a major contributor to silicon complexity and to the overall system power consumption
 - Bringing the optics closer to the silicon enables performance scale-up and efficiency in next generation systems
- Oracle has announced a family of performance-leading all-opticallyinterconnected switching platforms

- 49.1Tbps bandwidth, 450ns latency, 2U chassis, 16X improvement in Size*Power