Challenges for Low-Power Bio-Medical RFIC Sayfe Kiaei Professor Arizona State University **NSF** Connection One Center sayfe@asu.edu

ECTC 2011

ECTC 2011

Science & Technology Convergence

Biology and Medicine

Nanotechnology

Electronics

Neurobiology Chem, Phys, Geo, Space

ECTC 2011

Bio-Telemetry

- **k** Wireless Telemetry
 - ***** Diabetes
 - ***** Blood Pressure
 - * Cholesterol
 - * DNA Meter
- * Location + Position + Orientation

Intelligent Wireless Systems

Typical Wireless Body Area Network

System Requirements

- * Adaptive
- * Low-Power / Self Powered
- * Reconfigurable
- * Miniature
- * Harsh Environment

Challenges in:

- Medical Implanted Communication System (MICS)
- * Implanted Sensor
- * Adaptive SNR Digital Hearing Aid System

Implantable RF Transceiver

***** Applications:

- ***** Treating Heart conditions (regulating heart rates via pacing and/or defibrillation)
- ***** Time Release Pain Control
- * Internal Imaging
- ***** Time Release Location Aware Drug Delivery

***** System Constraints:

- ***** Power, Size, Complexity
- ***** System, Architecture
- * RF Circuit: Sensitivity, Selectivity, Linearity, Power
- ***** Packaging, Harsh Envirnment

MICS Specifications [1]

- * 402-405 MHz operating band
- * 10 channels, 300 KHz each
- * -16 dBm (25µW) maximum Tx Antenna power
- * Data-rate, modulation schemes, and BER not specified
- * Wakeup Rx: 98%, Rx (1%), Tx (1%)

[1] MICS Band Plan, FCC Rules and Regulations, Part 95, Jan 2003.

Transceiver Architecture

ECTC 2011

Wakeup Receiver (WRX)

Super-Regenerative Receiver architecture [2]

The inventor of FM radio, Edwin Armstrong, invented and patented the regenerative circuit while he was a junior in college, in 1914. He patented the super-regenerative circuit in 1922, and the superheterodyne receiver in 1918.

[2] J. R. Whitehead, Super-Regenerative Receiver 2011 Cambridge, U.K. ; Cambridge Univ. Press, 1950

Reconfigurable Front-End

All Digital PLL

Non-coherent FSK

Shorter Lock time

All Digital Implementation DDS (Direct Digital Synthesis) Frequency discriminator. Frequency-to-voltage Frequency-to-digital

IC Floor Plan 0.18 micron CMOS

Wireless Capsule

Typical Capsule with Imaging Capability*

* Low-Power Ultrawideband Wireless Telemetry Transceiver for Medical Sensor Applications Yuan Gao*, *Member, IEEE*, Yuanjin Zheng, *Member, IEEE*, Shengxi Diao, Wei-Da Toh, Chyuen-Wei Ang, Minkyu Je, *Member, IEEE*, and Chun-Huat Heng, *Member, IEEE*

ECTC 2011

Implantable Wireless Neural-Sensor and Control

Cochlear Implant Used as Sensor

Integrated Hearing Aid

- * MicroPhone Array
 - * MEMS Based
- * Adaptive CT $\Sigma\Delta$ Modulator

Adaptive-Microphone Array DHA

Matched MEMS Microphones for Ultra-small Hearing Aids

A fabricated capacitive microphone covered by Ge-Se solid electrolyte on suspended parylene membrane. (a) Top view, (b) Ag nano-dendrite from Ni tip, (c) backside view **EOJC** microphone 21

Micro-speaker

Comparable Performance with Significant Reduced Power Consumption → Prolong Battery Life of Hearing Aids (The most demanded feature)

Front-side view

Back-side view

Power Scaling

Power (uW)	SNR (dB)
106	87
72	85
55	82
47	75

All Flexible Microfluidics

* Existing medical implants are structurally rigid
* Damage surrounding tissues or muscles

* All flexible micro-fluidics for implantable modules

- Reservoirs, Channels, Valves, Pumps in a flexible enclosure
- * Low-power osmotic pumps

Fabricated Proto-type Separation

A factor of ~ 20,000 size reduction

Thank You