High Performance Closed-Channel Cooling System Using Multi-channel Electro-osmotic Flow pumps for 3D-ICs

K.Suzuki, H. Kudo, ¹Y. Oguri, ¹J. Nakatsuka, ²A. Tsukune, ²Y. S. Kim, ²H. Kitada, K. Fujimoto, ¹I. Kinefuchi, ¹Y. Matsumoto, and ²T. Ohba

> Dai Nippon Printing Co., Ltd. ¹University of Tokyo, ²Tokyo Institute of Technology

- Closed-channel cooling system
- Multi-channel EOF pumps
- Cooling chip fabrication
- Pumping performance
- Cooling capability

Power Density of MPUs

Hot Spot Issues

- Lowering of speed performance
- Increase in power consumption
- Degradation of functional reliabilities
- Thermal management for 3D-IC integration

Typical Micro-channel Cooling System

- Closed-channel cooling system
- Multi-channel EOF pumps
- Cooling chip fabrication
- Pumping performance
- Cooling capability

Closed-channel Cooling System (C³S)

Application of C³S to 3D-IC

Closed-Channel Cooling System

MPU/GPU —

Wide IO DRAM -

on-chipTSVs²

PCB or Interposer

Off-chipTSVs

- Closed-channel cooling system
- Multi-channel EOF pumps
- Cooling chip fabrication
- Pumping performance
- Cooling capability

Electro-osmotic Flow (EOF) Mechanism

Multi-channel EOF pumps

Dimensions of EOF pump

Chip	Channel-A	Channel-B	Channel-C
<i>D</i> ₁ (μm)	5	5	5
D ₂ (μm)	100	100	100
L ₁ (μm)	50	50	50
L ₂ (μm)	100	200	200
Channel (EOF unit) number	91	55	46

- Closed-channel cooling system
- Multi-channel EOF pumps
- Cooling chip fabrication
- Pumping performance
- Cooling capability

Fabrication Process of Cooling Chip

(a) Si trench formation

(b) Formation of through Si via (TSV) filled with electro-plated Cu

(c) Patterning AI line for applying voltage

(e) Surface activated bonding (SAB)

Close-up Images of EOF pumps and Hot Spot

Cooling Chip Mounted to Measurement Jig

Wires for applying voltage

Inlet Outlet Coolant: Isopropyl alcohol (IPA)

- Closed-channel cooling system
- Multi-channel EOF pumps
- Cooling chip fabrication
- Pumping performance
- Cooling capability

P_{max} and Q_{max} as a Function of Number of EOF Unit at 40 V

Normalized P_{max} and Q_{max} by Total Channel Area

- Closed-channel cooling system
- Multi-channel EOF pumps
- Cooling chip fabrication
- Pumping performance
- Cooling capability

Fluid Behavior of Coolant on Hot Spot

Change in Coolant Temperature at Back and Front Sides of Hot Spot

Summary

- We have successfully fabricated a cooling chip equipped with C³S with multi-channel EOF pumps.
- Operating the EOF pumps with a very low applied voltage of 40 V.
- High pumping capability: P_{max} = 10 kPa, Q_{max} = 38 µl/min.
- Cooling capability was as high as 140 W/cm².
- C³S with the EOF pumps enable us to meet the requirements of 3D-ICs.

Acknowledgements

This study was carried out based on the three-dimensional integration development program of the WOW Alliance and the authors thank the more than 20 alliance members.