Electronic Packaging Challenges in the Medical Device Industry ECTC May 26, 2015

Donald Banks, Alvin Weinberg and Gabriel Mouchawar

Introduction

- Implantable medical device challenges
- Device architecture concepts
- Implantable cardioverter defibrillator downsizing
- Device packaging evolution at SJM
- Ongoing opportunities
- Future solutions

Implantable Medical Device Challenges

- High quality and reliability
- Strict regulatory environment
- Validation and traceability requirements
- Small sales volumes
- Reduced size and thickness in a physiologic shape
- Increased functionality
- Increased service life
- In line with healthcare economics

Device Architecture Concepts

Concept	Pros	Cons
Folded/Stacked Flex Hybrid battery capacitor hybrid	Thinnest product	 Largest product footprint Complex hybrid (multiple component surfaces)
Single-Sided Rigid Hybrid battery capacitor hybrid	 Balanced thinness/footprint Simplest electronics assembly (one side) 	 Requires thinner battery and capacitor
Double-Sided Rigid Hybrid capacitor battery hybrid	Smallest footprintThickest Capacitors	 Thickest product Two component surfaces

ICD Volume Downsize Progression

 Advances in batteries, HV capacitors, electronics, packaging have allowed more capability in smaller and thinner devices

ST. JUDE MEDICAL

Device Packaging Evolution at SJM (1990's)

- Double sided HTCC hybrid substrate
- Additional modules required
 - Charging HV PCB
 - Telemetry and RF

Low voltage side

Activity sensor

High voltage side

Assembly

Device Packaging Evolution at SJM (2000's)

- Organic high density interconnect (HDI)
 - Optimized shape
 - Integration of charging/inductive modules
- Component integration (IC, Ta caps, MEMS, GMR)
- Use of connectors

High voltage side

Completed hybrid w/RF module

Low voltage side

Device Packaging Evolution at SJM (2010's)

- Single sided organic substrate for ease of assembly
- Edge connector for test and burn-in
- Integrated RF

Encapsulated hybrid after routing

Non-populated side of the hybrid

Active side of the hybrid pre-encapsulation

Ongoing Opportunities

- ENEPIG for universal substrate finish
- BGA, LGA, WLCSP
- Embedded structures
- IC integration
- Cost reduction
- Manufacturability and testability
- Alternate energy sources

Future Solutions

