BRIDGING THE GAP BETWEEN SILICON AND PACKAGING

GREGG BARTLETT CHIEF TECHNOLOGY OFFICER GLOBALFOUNDRIES

OBALFOUNDRIES

What has Changed? Technology Challenges Technology Solutions The New Supply Chain Summary

Silicon Interconnect Evolution

Interconnect process optimized by assembly provider with little or no Foundry involvement

Wire Bond: 2D Typically 25-1000ea per IC

Die Edge

Flip Chip: 2D Typically 250-10,000 per IC

Evolution to Flip Chip and Pb Free Bump: Driven by Performance and Interconnect Density

Increasing collaboration between Foundry and assembly provider for optimum solutions

Impacts: Increased I/O density Improved electrical performance Higher modulus interconnect Weaker low K dielectric Substrate thickness and CTE have increasing role

Explosion of Wafer Level Products: Driven by I/O Density, Performance, Form Factor

Courtesy of Yole

Driving Revolution to Silicon Interconnect

Interconnect solutions require high collaboration between Foundry-OSAT

Through Silicon Via (TSV): 3D Typically 1000-50,000 per IC

Through Silicon Via (TSV): 2.5D TSV's in interposer

TSV's

GLOBALFOUNDRIES

Requiring New Technologies

New interconnect at much finer pitch Probe (wafer test) as fine pitch Thin wafer handling New assembly technologies and design rules to manage warpage

010101010101010101010

101001000101111

Technology Challenges

Performance

More than Moore

Power

Video and data packet processing are driving need for faster memory access

Power becoming costly for performance and mobile applications

System Level Performance and Bandwidth

Power consumed by logic and memory reducing battery life

Increasing power required for logic and memory Digital scaling and performance (for video/data) outstripping memory capacity

Graphics,

Mobile Video, Networking

Processors, FPGA

GLOBALFOUNDRIES

Increasing Cost, Reducing Benefit of Scaling

Source: IMEC INSITE program in collaboration with partners

I/O Density Trend Drives Packaging Shrinking pitch drives non-collapsing and smaller bumps Smaller bumps increase warpage management risk

010101010101010101010

12

101001000101111

Solutions: Innovation, Cost, Collaboration

Performance

More than Moore

Power

Memory Bandwidth Solution for High Power Applications: 2.5D

Interposer is "passive silicon" with TSV's used for high density interconnect.

Main challenges are warpage of thin interposer and yield.

2.5D Enables "Fission"

Smaller die, higher yield, lower cost Utilize process which is optimal for each function Scale each function when required, not whole SOC Derive savings at system level as well: board, substrates, power

Memory Bandwidth Solution for Low Power Applications: 3D

3D: Vertical stacking of (mostly) logic and memory die. TSV's in logic die.

TSV's (Through-Silicon-Vias): Vertical connections through silicon, for very high interconnect density between IC's. *Wide I/O standard is 6um diameter with pitch 40-100um*

Much higher interconnect density increases bandwidth

Much shorter interconnect improves performance

Increased bandwidth reduces power

GLOBALFOUNDRIES

TSV Formation

Step height measurement for Cu pumping detection, Buffer polish and 2nd anneal can be skipped

TSV Process Development

Module development at consortia

Integration in Foundry

Collaboration between consortia, foundry, tool manufacturer critical

TSV Etch installed, Fab 8, NY

GLOBALFOUNDRIES

Packaging Roadmap

010101010101010101010

U 19

101001000101111

The New Supply Chain

Performance

More than Moore

Power

Why Won't the Current Model Work?

Solutions developed in isolation are no longer adequate to address the complexity of high-silicon content packaging

The New Model

Will Likely See Supply Chain Alliances Within the Industry

Collaborative Solutions Utilizing the Best Minds

Collaboration: Design for Yield

Product-like test chips

Tool standardization

TSV metrics

Redundant vias for yield

Probe at fine pitch

Test chips for TSV and thinning impacts on transistors

> Process Window Characterization

Customer/Foundry

Foundry/OSAT/ Tool Suppliers

Metrology with OSATs

Foundry/Customer/ EDA suppliers

Foundry/Customer/ Tool suppliers

Foundry/OSATs

Foundry/ OSATs/ Customer

GLOBALFOUNDRIES

Co-Locate to Develop Solutions for Customers

Bring foundry and partners together to develop new tools, processes, and technologies for joining silicon

Fast learning cycles

Develop BEOL, bump, BSI, 3D assembly, test, and metrology together in one location for best collaborative ideas and evaluation of potential solutions

Development of thin wafer (50µm) handling tools and methods

Value Creation: Deliver Solutions to Customers

Thank You

Trademark Attribution

GLOBALFOUNDRIES, the GLOBALFOUNDRIES logo and combinations thereof are trademarks of GLOBALFOUNDRIES Inc. in the United States and/or other jurisdictions. Other names used in this 010001001011110 28 presentation are for identification purposes only and may be trademarks of their respective owners.

©2012 GLOBALFOUNDRIES Inc. All rights reserved.

GLOBALFOUNDRIES'